
1

6.096 Lecture 10

Evolution
Gene correspondence - Rearrangements - Genome duplication

Evolutionary change

Lecture 1 - Introduction
Lecture 2 - Hashing / BLAST
Lecture 3 - Combinatorial Motif Finding
Lecture 4 - Statistical Motif Finding
Lecture 5 - Sequence alignment and Dynamic Programming
Lecture 6 - RNA structure and Context Free Grammars
Lecture 7 - Gene finding and Hidden Markov Models
Lecture 8 - HMMs algorithms and Dynamic Programming
Lecture 9 - Evolutionary change, phylogenetic trees

Lecture 10 - Genome rearrangements, genome duplication

6.096 – Algorithms for Computational Biology – Lecture 9

Challenges in Computational Biology

DNA

4 Genome Assembly

Gene FindingRegulatory motif discovery

Database lookup

Gene expression analysis
9

RNA transcript

Sequence alignment

Evolutionary Theory
7

TCATGCTAT
TCGTGATA A
TGAGGATAT
TTATCATAT
TTATGATTT

Cluster discovery
10

Gibbs sampling
Protein network analysis

12

Emerging network properties
14

13
Regulatory network inference

Comparative Genomics

RNA folding

6

Overview

Genome correspondence
Chromosome evolution

Genome rearrangements
Sorting by reversals
Genome duplication

Duplicate gene evolution
Duplication and rearrangements

Framework: graph of gene correspondence

S.cerevisiae S.bayanus

duplication

loss

ortholog

merge

• Weighted bipartite graph
– Graph represents gene correspondence
– Nodes: genes (w/ coordinates)
– Edges: sequence similarity (w/ weights)

• Two types of evolutionary relationships
– Orthologs (1-to-1 matches)
– Paralogs (1-to-many / many -to-many)

• Method
– Eliminate spurious edges (simplify graph)
– Select edges based on available information

• Blocks of conserved gene order
• Protein sequence similarity

Inferring orthologous gene relationships

• BBH - Best bi-directional hits

• COG - Clusters of orthologous genes

• BUS - Best unambiguous subgraphs

2

C

A

B

1

2

3

BUS: Best Unambiguous Subgraphs

806040

353080

403580

80603

CB

802

801

A

806040

3530

4035

80

80

C

A

B

1

2

3C

A

B

1

2

3

Species1 Species2

3

2

1

CBA

S
pe

ci
es

1

Species2

Connected components of all best edges

A

B

C

1

2

3

Implementation: Iterative refinement

A

B

C

1

2

3

A

B

C

1

2

3

A

B

C

1

2

3

Iterate
Full bipartite graph

G=(X+Y,E)
Directed Graph D

Maximal out-edges M,
relative threshold T

Separate connected
components of M

Iterative refinement with increasing relative threshold

Conservation of gene order (synteny)

S.paradoxus

S
.c

er
ev

is
ia

e

Preferentially select edges in synteny blocks

Genomic Dot-Plot (6000 x 6000)

S.paradoxus scaffolds

S
.c

er
ev

is
ia

e
ch

ro
m

os
om

es

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

XVI

I

Conservation of local gene order

S.cerevisiae

S.cerevisiae Chromosome VI 250-300kbp

S.paradoxus

S.mikatae

S.bayanus

Overview

Genome correspondence
Chromosome evolution
Genome rearrangements

Sorting by reversals
Genome duplication

Duplicate gene evolution
Duplication and rearrangements

3

Regions of rapid change

Protein family expansions in chromosome ends

Specific regions of rapid evolution

Position on chromosome

S
.c

er
ev

is
ia

e
ch

ro
m

os
om

es

• HXT, FLO, COS,
PAU, YRF families

• 80% of ambiguities in
5% of the genome

• 31 of 32 telomeres in
ambiguity clusters

Specific mechanisms mediate rearrangements

Evolutionary features

• 10 translocations
– 8 across Ty elements
– 2 across nearly identical genes

Ty

Ty

tRNA tRNA

• 19 inversions
– All flanked by tRNA genes

Transposon locations are conserved

• Transposons are active
– Full-length Ty elements are recent
– Typically appear in only one genome

• Transposon locations are conserved
– Recent insertions reuse old loci
– LTR remnants found in other genomes

Evolutionary advantage of transposons ?

• Studied 8 strains resulting from experimental evolution
– 3 strains duplicate Chr4R, containing HXT genes
– 3 strains display extensive overlapping Chr5R deletions
– 3 strains reuse same breakpoint on Chr14R

• Population advantage in transposon location
– Ability to mediate reversible rearrangements

Transposons selectively kept in specific loci

Differences in gene content

• 8-10 genes unique to each genome
– Metabolism, regulation/silencing, stress

• Changes in gene dosage
– 10-20 tandem duplications (1-2 genes)
– 2 segment duplications (5-6 genes)

• Protein family expansions
– 211 genes (3%) with ambiguous correspondence
– Paralog duplication and/or loss

Segment duplication
Different species, few novel genes

Duhnam, M., et. al. Characteristic Genome Rearrangements in Experimental Evolution of Saccharomyces
Cerevisiae. PNAS 99, no. 25 (December 10, 2002): 16144-16149. Copyright 2002.
National Academy of Sciences, U.S.A.

4

iii

v

iii

iv Inversions Intein insertion

TranspositionChromosomal exchangeTelomeric expansion

Intein sequence

Chromosomal Evolution

vi Segmental duplication

Overview

Genome correspondence
Chromosome evolution

Genome rearrangements
Sorting by reversals
Genome duplication

Duplicate gene evolution
Duplication and rearrangements

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

1 2 -6 -5 -4 -3 7 8 9 10

1 2 -6 -8 -7 3 4 5 9 10

1 2 -6 -8 -7 3 4 -10 -9 -5

1 2 3 4 5 6 7 8 9 10

Gene order rearrangement: overlapping inversions

1 2 3 4 5 6 7 8 9 10

1 2 -6 -5 -4 -3 7 8 9 10

1 2 -6 -8 -7 3 4 5 9 10

1 2 -6 -8 -7 3 4 -10 -9 -5

Inference of inversion history:
“sorting signed permutations by reversals”

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8

5

Reversals and Gene Orders

• Gene order is represented by a permutation p:
p = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

� Reversal r (i, j) reverses (flips) the elements
from i to j in p

r(i,j)

Reversal Distance Problem

• Goal: Given two permutations, find the shortest series of
reversals that transforms one into another

• Input: Permutations p and s

• Output: A series of reversals r1,…r t transforming p into s,
such that t is minimum

• t - reversal distance between p and s
• d(p, s) - smallest possible value of t, given p and s

Sorting By Reversals Problem

• Goal: Given a permutation, find a shortest series of
reversals that transforms it into the identity
permutation (1 2 … n)

• Input: Permutation p

• Output: A series of reversals r1, … rt transforming p
into the identity permutation such that t is minimum

Sorting By Reversals: Example

• t =d(p) - reversal distance of p
• Example :

p = 3 4 2 1 5 6 7 10 9 8
4 3 2 1 5 6 7 10 9 8
4 3 2 1 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

So d(p) = 3

Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1
Step 1: 2 3 4 5 -8 -7 -6 1
Step 2: 2 3 4 5 6 7 8 1
Step 3: 2 3 4 5 6 7 8 -1
Step 4: -8 -7 -6 -5 -4 -3 -2 -1
Step 5: g 1 2 3 4 5 6 7 8

Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1
Step 1: 2 3 4 5 -8 -7 -6 1
Step 2: -5 -4 -3 -2 -8 -7 -6 1
Step 3: -5 -4 -3 -2 -1 6 7 8
Step 4: g 1 2 3 4 5 6 7 8

6

Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1
Step 1: 2 3 4 5 -8 -7 -6 1
Step 2: -5 -4 -3 -2 -8 -7 -6 1
Step 3: -5 -4 -3 -2 -1 6 7 8
Step 4: g 1 2 3 4 5 6 7 8

What is the reversal distance for this
permutation? Can it be sorted in 3 steps?

Pancake Flipping Problem

• The chef is sloppy; he prepares
an unordered stack of pancakes
of different sizes

• The waiter wants to rearrange
them (so that the smallest winds
up on top, and so on, down to the
largest at the bottom)

• He does it by flipping over several
from the top, repeating this as
many times as necessary

Christos Papadimitrou and
Bill Gates flip pancakes

Pancake Flipping Problem: Formulation

• Goal: Given a stack of n pancakes, what is the
minimum number of flips to rearrange them into
perfect stack?

• Input: Permutation p
• Output: A series of prefix reversals r1, … r t

transforming p into the identity permutation such that
t is minimum

Pancake Flipping Problem: Greedy Algorithm
• Greedy approach: 2 prefix reversals at most to

place a pancake in its right position, 2n – 2 steps
total
at most

• William Gates and Christos Papadimitriou showed
in the mid-1970s that this problem can be solved
by at most 5/3 (n + 1) prefix reversals

Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 36 4 5, the first three
elements are already in order so it does not make
any sense to break them.

• The length of the already sorted prefix of p is
denoted prefix(p)

– prefix(p) = 3
• This results in an idea for a greedy algorithm:

increase prefix(p) at every step

• Doing so, p can be sorted

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of length n is
at most (n – 1)

Greedy Algorithm: An Example

7

Greedy Algorithm: Pseudocode

SimpleReversalSort(p)
1 for i� 1 to n – 1
2 j � position of element i in p (i.e., pj = i)
3 if j ? i
4 p� p * r(i, j)
5 output p
6 if p is the identity permutation
7 return

Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the
smallest number of reversals and takes five steps on
p = 6 1 2 3 4 5 :

• Step 1: 1 6 2 3 4 5
• Step 2: 1 2 6 3 4 5
• Step 3: 1 2 3 6 4 5
• Step 4: 1 2 3 4 6 5
• Step 5: 1 2 3 4 5 6

• But it can be sorted in two steps:
p = 6 1 2 3 4 5

– Step 1: 5 4 3 2 1 6
– Step 2: 1 2 3 4 5 6

• So, SimpleReversalSort(p) is not optimal

• Optimal algorithms are unknown for many
problems; approximation algorithms are used

Analyzing SimpleReversalSort (cont’d) Approximation Algorithms

• These algorithms find approximate solutions rather
than optimal solutions

• The approximation ratio of an algorithm A on input p
is:

A(p) / OPT(p)
where

A(p) -solution produced by algorithm A
OPT(p) - optimal solution of the problem

Approximation Ratio/Performance Guarantee
• Approximation ratio (performance guarantee) of

algorithm A: max approximation ratio of all inputs of
size n
– For algorithm A that minimizes objective

function (minimization algorithm):
•max|p| = n A(p) / OPT(p)

Approximation Ratio/Performance Guarantee
• Approximation ratio (performance guarantee) of

algorithm A: max approximation ratio of all inputs of
size n
– For algorithm A that minimizes objective

function (minimization algorithm):
•max|p| = n A(p) / OPT(p)

– For maximization algorithm:
•min|p| = n A(p) / OPT(p)

8

p = p1p2p3…pn-1pn

• A pair of elements p i and p i + 1 are adjacent if
pi+1 = pi + 1

• For example:
p = 1 9 3 4 7 8 2 6 5

• (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints

There is a breakpoint between any pair of non-
adjacent elements:

p = 1 9 3 4 7 8 2 6 5

• Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) form
breakpoints of permutation p

• b(p) - # breakpoints in permutation p

Breakpoints: An Example

• We put two elements p 0 =0 and p n + 1=n+1 at the ends
of p

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1 9 3 4 7 8 2 6 5

p = 0 1 9 3 4 7 8 2 6 5 10

� Each reversal eliminates at most 2 breakpoints.

p = 2 3 1 4 6 5
0 2 3 1 4 6 5 7 b(p) = 5
0 1 3 2 4 6 5 7 b(p) = 4
0 1 2 3 4 6 5 7 b(p) = 2
0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

� Each reversal eliminates at most 2 breakpoints.
� This implies:

reversal distance = #breakpoints / 2
p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5
0 1 3 2 4 6 5 7 b(p) = 4
0 1 2 3 4 6 5 7 b(p) = 2
0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)
1 while b(p) > 0
2 Among all possible reversals, choose

reversal r minimizing b(p • r)
3 p � p • r(i, j)
4 output p
5 return

9

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)
1 while b(p) > 0
2 Among all possible reversals, choose

reversal r minimizing b(p • r)
3 p � p • r(i, j)
4 output p
5 return

Problem: this algorithm may work forever

Strips

• Strip: an interval between two consecutive breakpoints
in a permutation
– Decreasing strip: strip of elements in decreasing

order (e.g. 6 5 and 3 2).
– Increasing strip: strip of elements in increasing

order (e.g. 7 8)

0 1 9 4 3 7 8 2 5 6 10

– A single-element strip can be declared either increasing or decreasing.
We will choose to declare them as decreasing with exception of the
strips with 0 and n+1

Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one
decreasing strip, then there exists a reversal
r which decreases the number of
breakpoints (i.e. b(p • r) < b(p))

Things To Consider

• For p = 1 4 6 5 7 8 3 2
0 1 4 6 5 7 8 3 2 9 b(p) = 5

– Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2
0 1 4 6 5 7 8 3 22 9 b(p) = 5

– Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2
0 11 4 6 5 7 8 3 22 9 b(p) = 5

– Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

– Find k – 1 in the permutation

10

Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2
0 1 4 6 5 7 8 3 2 9 b(p) = 5

– Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

– Find k – 1 in the permutation
– Reverse the segment between k and k-1:
– 0 1 4 6 5 7 8 3 2 9 b(p) = 5

– 0 1 2 3 8 7 5 6 4 9 b(p) = 4

Reducing the Number of Breakpoints Again

– If there is no decreasing strip, there may be no
reversal r that reduces the number of
breakpoints (i.e. b(p • r) = b(p) for any reversal
r).

– By reversing an increasing strip (# of
breakpoints stay unchanged), we will create a
decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

Things To Consider (cont’d)

• There are no decreasing strips in p, for:

p = 0 1 2 5 6 7 3 4 8 b(p) = 3

p • r(6,7) = 0 1 2 5 6 7 4 3 8 b(p) = 3

� r(6,7) does not change the # of breakpoints
� r(6,7) creates a decreasing strip thus guaranteeing

that the next step will decrease the # of
breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2 if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that minimizes b(p • r)
4 else
5 Choose a reversal r that flips an increasing strip in p
6 p � p • r
7 output p
8 return

• ImprovedBreakPointReversalSort is an approximation
algorithm with a performance guarantee of at most 4
– It eliminates at least one breakpoint in every two

steps; at most 2b (p) steps
– Approximation ratio: 2b(p) / d(p)
– Optimal algorithm eliminates at most 2 breakpoints in

every step: d(p) ‡ b(p) / 2
– Performance guarantee:

•(2b(p) / d(p)) ‡ [2b(p) / (b(p) / 2)] = 4

ImprovedBreakpointReversalSort: Performance
Guarantee

Signed Permutations

• Up to this point, all permutations to sort were
unsigned

• But genes have directions… so we should consider
signed permutations

5’ 3’

p = 1 -2 - 3 4 -5

11

GRIMM Web Server

• Real genome architectures are represented by
signed permutations

• Efficient algorithms to sort signed permutations
have been developed

• GRIMM web server computes the reversal
distances between signed permutations:
http://nbcr.sdsc.edu/GRIMM/grimm.cgi

GRIMM Web Server

http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM

Sorting by reversals Overview

Genome correspondence
Chromosome evolution

Genome rearrangements
Sorting by reversals

Genome duplication
Duplicate gene evolution

Duplication and rearrangements

20 Myr

S.bayanus

S.paradoxus
S.mikatae

S.cerevisiae

5 Myr

K. waltii

100 Myr

Further back in evolutionary time

Ability to ask different set of questions

Whole Genome Duplication (WGD) in Yeast?

Wolfe ‘97

Scer chr 4

Scer chr 12

• Genomic evidence
– Conserved order of paralogous genes
– Same transcriptional orientation

• However
– Interspersed with single-copy genes

Interpretation: Genome duplication followed by gene loss

Courtesy of Glenn Tesler. Used with permission.

12

Whole genome duplication is controversial

• “There was a whole-genome
duplication.” Wolfe, Nature ‘97

• “There was no whole-genome
duplication.” Dujon, FEBS 2000

• “At least some chrom dup.
occurred independently”
Langkjaer, JMB, 2000

• “Dynamic equilibrium of
duplications and loss” Llorente,
FEBS, 2000

• “Recent evidence supports
single event”. Wong, PNAS ‘02

• “Continuous block duplications
and deletions” Dujon, Yeast
2003

• “Dup. precedes divergence from
Kluyveromyces.” Piskur,
Nature, 2003

• “Telomere-mediated duplication
events” Coissac, Mol Bio Evo
1997

• “Multiple closely spaced events”
Friedman, Genome Res, 2003

• “Spontaneous duplication of
large chromosomal segments”
Koszul, EMBO ’04

• Insufficient evidence
– Only 50% of genome in duplicate regions
– Only 8% of genes present in two copies
– Extensive redundancy outside duplicate regions

• Evidence against WGD
– Divergence-based dating show multiple times
– Other species have similar level of redundancy

• Alternative evolutionary scenario proposed
– Independent segmental duplications
– Also consistent with the evidence

Evidence remains inconclusive

Missing evidence supporting WGD

Non-duplicated relative

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

XVI

I

K.waltii scaffolds

S
.c

er
ev

is
ia

e
ch

ro
m

os
om

es

10.5Mb

12Mb
Gene correspondence

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

XIV

XV

XVI

I

K.waltii scaffolds

S
.c

er
ev

is
ia

e
ch

ro
m

os
om

es
Gene correspondence

K. waltiiK. waltii

Sister regions show gene interleaving

K. waltii

Gene interleaving is evidence of complete duplication

Few genes remain in 2 copies

K
. w

al
tii

 c
hr

om
os

om
es

Chr 2

Chr 1

Chr 3

Chr 4

Chr 5

Chr 6

Chr 7

Chr 8

Duplicate mapping tiles K. waltii

K.waltii
Scer copy1

Scer copy2

S. cer.

13

Doubly Conserved Synteny Blocks (DCS)

• 253 DCS blocks were identified containing 75%
of K. waltii genes and 81% of S. cerevisae
genes

• A typical DCS block has 27 genes (largest
block has 81 genes).

• DCS blocks are separated by ~3 genes on the
average.

• In a DCS block 90% of Kw genes have a match
in at least 1 of the 2 Sc regions.

• 47 blocks have no duplicated gene.

Duplicate mapping of centromeres

Recognize sister regions solely based on gene order

S
. c

er
ev

is
ia

e

S
. c

er
ev

is
ia

e

145 blocks cover 88% of genome

Duplicate mapping tiles S. cerevisiae
Whole-genome duplication resolved

Number
of genes

5,000

10,000

W
G

D

100Myrs
time

Today

5,500

G
en

e
Lo

ss

~500 gained

Overview

Genome correspondence
Chromosome evolution

Genome rearrangements
Sorting by reversals
Genome duplication

Duplicate gene evolution
Duplication and rearrangements

Accelerated gene divergence

• Ohno hypothesized that after duplication, one
copy would preserve the original function, and
the other copy would be free to diverge. Others
argued that both copies would diverge.

• 76 of 457 duplicated gene pairs show
accelerated evolution. In 95% of the cases,
acceleration was limited to one of the 2
paralogs.

• Deletion of the ancestral paralog is lethal in
18% of the cases.

• Deletion of a derived paralog is never lethal.

14

Fate of duplicated genes

S. cerevisiae copy 1

S. cerevisiae copy 2

K. waltii

Evidence of accelerated protein divergence ?

• 457 genes kept in two copies, result of selection
– Involved in sugar metabolism and fermentation

WGD

Scenarios for rapid gene evolution

One copy faster

Both copies faster

Scer - copy1
Scer - copy2
Kwal

Scer - copy1
Scer - copy2

Kwal

Ohno, 1970

Lynch, 2000

20% of duplicated genes show acceleration20% of duplicated genes show acceleration
95% of cases: Only one copy faster

Emerging gene functions after duplication

Asymmetric divergence � recognize ancestral / derived

Scer - Sir3 (silencing)
Scer - Orc1 (origin of replication)
Kwal - Orc1

4-fold acceleration

Scer - Ski7 (anti-viral defense)

Scer - Hbs1 (translation initiation)

Kwal - Hbs1

3-fold acceleration

• Origin of replication � silencing

• Translation initiation � anti-viral defense

Distinct functional properties

Gain new function and lose ancestral function

Gene
deletion Never lethalLethal (20%)

Derived functionAncestral function

Distinct functional properties

Gain new function and lose ancestral function

Localization

Expression

Gene
deletion

Specific
(mitochondrion, spores)General

Specific
(stress, starvation)Abundant

Never lethalLethal (20%)

Derived functionAncestral function

Decelerated evolution

• 60 gene pairs (13% of 457 pairs)
– 98% protein identity (all pairs: 55%)
– 90% identity in 4fold degenerate sites (all pairs: 41%)

• Not recent duplication
– Gene order argues ancestral WGD pairs

Scer copy1

Scer copy2
Kwal

Gene conversion?

15

Evidence of gene conversion

Periodic gene conversion

K. waltii

YER102W – S. cerevisiae

YBL072C – S. cerevisiae

YER102W – S. cerevisiae

YBL072C – S. cerevisiae

YER102W – S. bayanus
YBL072C – S. bayanus

• Tree root reveals time of duplication
– No acceleration in the K. waltii branch
– The two genes have recently replaced each other

WGD

A. gossypii

• Branching order reveals gene conversion
– Paralogs are closer to each other than to their ortholog
– Both S. cerevisiae and S. bayanus show gene conversion

Evolutionary genomics in yeast

• Genome ancestry resolved
– Whole -genome duplication
– Massive gene loss

• Emergence of new functions
– Asymmetric acceleration
– Ancestral and derived functions
– Repository for buffering mutations

Overview

Genome correspondence
Chromosome evolution

Genome rearrangements
Sorting by reversals
Genome duplication

Duplicate gene evolution
Duplication and rearrangements

Genome duplication in a vertebrate

Mammals: How many WGDs?

16

How did the pre-duplicated ancestor look like?

• Can we derive the architecture of the
current (human and tetraodon genomes)
genomes in terms of the common
ancestor?

• What was the sequence of
rearrangement events after WGD?

• What is the architecture of the ancestral genome?
• What is the evolutionary scenario for transforming one genome into the

other?

Unknown ancestor
~ 80 million years
ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements

History of Chromosome X

Rat Consortium, Nature, 2004

Reversals

• Blocks represent conserved genes.
• In the course of evolution, blocks 1, 2, …9, 10 could be transformed into

1, 2, 3, -8, - 7, - 6, - 5, - 4, 9, 10.

1 32

4

10

5
6

8
9

7
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Reversals

1 32

4

10

56

8
9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

� Blocks represent conserved genes.
� In the course of evolution, blocks 1,…,10 could be misread as

1, 2, 3, -8, -7, -6, -5, -4, 9, 10.
� Evolution: occurred one-two times every million years on the

evolutionary path between human and mouse.

Reversals

1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The inversion introduced two breakpoints
(disruptions in order).

17

Sorting by reversals
Most parsimonious scenarios

Step 0: p 2 -4 -3 5 -8 -7 -6 1
Step 1: 2 3 4 5 -8 -7 -6 1
Step 2: -5 -4 -3 -2 -8 -7 -6 1
Step 3: -5 -4 -3 -2 -1 6 7 8
Step 4: g 1 2 3 4 5 6 7 8

The reversal distance is the minimum
number of reversals required to transform
p into g.
Here, the reversal distance is d=4.

Breakpoint graph

G(p,g)

0 2 -4 -3 5 -8 -7 -6 1 9

0b 2a 2b 4b 4a 3b 3a 5a 5b 8b 8a 7b 7a 6b 6a 1a 1b 9a

6 breakpoints (consecutive elements in both genomes disagree)
3 adjacencies (consecutive elements in both genomes agree)

� DualityTheorem:

reversal distance = #genes + 1 – #cycles + h

where h is rather complicated, but can be computed from
breakpoint graph in polynomial time.

� Here, reversal distance = 8 + 1 – 5 + 0 + 0 = 4

Breakpoint graph

G(p,g)

0 2 -4 -3 5 -8 -7 -6 1 9

0b 2a 2b 4b 4a 3b 3a 5a 5b 8b 8a 7b 7a 6b 6a 1a 1b 9a

6 breakpoints (consecutive elements in both genomes disagree)
3 adjacencies (consecutive elements in both genomes agree)

� Duality Theorem for Sorting by Reversals - simple and
imprecise version.

reversal distance = number of elements + 1 – number of cycles

Constructing Breakpoint Graph: Dot Plot

Constructing Breakpoint Graph: Black Path Constructing Breakpoint Graph: Gray Path

18

Constructing Breakpoint Graph: Superimposing Two Paths Constructing Breakpoint Graph: Removing Dot-Plot

Human-mouse breakpoint graph
Constructing Rearrangement Scenarios

Reconstructing pre -duplicated Genome

• WGD of genome R results in perfect duplicated
genome R+R

• R+R becomes subject to rearrangements that
shuffle genes in R+R and result in some
rearranged duplicated genome P

• Problem: reconstruct pre-duplicated genome R
from rearranged duplicated genome P.

Genome Halving Problem

• WGD of genome R results in perfect duplicated
genome R+R

• R+R becomes subject to rearrangements that
shuffle genes in R+R and result in some
rearranged duplicated genome P

• Problem: reconstruct pre-duplicated genome R
from rearranged duplicated genome P.

• Genome Halving Problem: Given a duplicated
genome P, recover the ancestral pre -duplicated
genome R minimizing the reversal distance from
R+R to P

19

Illustration

R=+a -d +e -c +b

R+R=+a -d +e -c +b +a -d +e -c +b
+a -d +d -a -b +c -e +e -c +b
+a -d +d +c -e +e -c +b +a +b
+a -d +d -e +e -c -c +b +a +b

P=+a -d +e -d +e -c -c +b +a +b

Recover it!

R = ?? ?? ?? ?? ??

P = +a -d +e -d +e -c -c +b +a +b

? ? ?

Even worse!

R = ?? ?? ?? ?? ??

P = +a -d +e -d +e -c -c +b +a +b

? ? ?

Suppose we somehow figured out what is R:
would it help to find d(P,R+R)?

R = +a +c +d +e +b

R+R = +a +c +d +e +b +a +c +d +e +b

P = +a -d +e -d +e -c -c +b +a +b

???

+a +c +d +e +b

+a +c +d +e +b +a +c +d +e +b
+a -e -d -c -a -b -e -d -c +b
+a -e -d -c +c +d +e +b +a +b
+a -e -d -e -d -c +c +b +a +b
+a +d +e +d +e -c +c +b +a +b
+a +d +e +d +e -c -c +b +a +b
+a +d +e -d +e -c -c +b +a +b

+a -d +e -d +e -c -c +b +a +b

HP-theory: reminder

• Transforming signed gene order
+a +b –c

into unsigned gene order
atah btbh chct

• Elements xt and xh are called obverse pair
• t stands for tail and h stands for head

Breakpoint graph is formed by 3 matchings:

obverse matching
black matching (adjacent elements in 1st permutation)
graymatching (adjacent elements in 2nd permutation)

20

HP-theory: reminder

• Breakpoint graph is formed by obverse, black and gray matchings.

• Every pair of matching forms a collection of
alternating cycles:

black-graycycles (#cycles in HP theory)
single black-obverse cycle (1st permutation)
single gray-obverse cycle (2 nd permutation)

reversal distance between two circular permutations =

#elements - #black-gray cycles

Reversal distance between duplicated genomes

• While there exist fast algorithms for computing reversal distance between
permutations (i.e., no duplicate genes), the problem of computing reversal
distance between genomes with duplicated genes remains unsolved.

• Solution: label different copies of each gene
(k! different labelings for a gene with k copies)

• One of these labelings is unavoidably an

optimal labeling

corresponding to the optimum rearrangement
scenario

• Running time: (k!)n invocations of HP algorithms for a genome with
n genes each present in k copies.

Labelings and breakpoint graphs

• Every labeling transforms genomes with
duplicated genes into genomes without
duplicated genes and enables
applications of HP algorithm.

• Every labeling corresponds to a
breakpoint graph

• Good labelings correspond to breakpoint
graphs with large number of cycles.

• Can we construct a labeling
corresponding to a large number of
cycles?

Rearrangements in Duplicated Genomes: Challenges.

• Computing d(P,Q). Can we construct a
labeling of duplicated genomes P and Q
maximizing the number of cycles? NO

Rearrangements in Duplicated Genomes: Challenges.

• Computing d(P,Q). Can we construct a
labeling of duplicated genomes P and Q
maximizing the number of cycles? NO

• Computing d(P,R+R). Can we construct a
labeling of duplicated genomes P and R+R
maximizing the number of cycles? NO

Rearrangements in Duplicated Genomes: Challenges.

• Computing d(P,Q). Can we construct a
labeling of duplicated genomes P and Q
maximizing the number of cycles? NO

• Computing d(P,R+R). Can we construct a
labeling of duplicated genomes P and R+R
maximizing the number of cycles? NO

• Computing minR d(P,R+R).

21

Rearrangements in Duplicated Genomes: Challenges.

• Computing d(P,Q). Can we construct a
labeling of duplicated genomes P and Q
maximizing the number of cycles? NO

• Computing d(P,R+R). Can we construct a
labeling of duplicated genomes P and R+R
maximizing the number of cycles? NO

• Computing minR d(P,R+R). YES!

Rearrangements in Duplicated Genomes: Challenges.

• Breakpoint graphs are not defined for
duplicated genomes.

• Can we generalize the notion of breakpoint
graph for the case of duplicated genomes?

• Idea: Explore the connection between de
Bruijn graphs and breakpoint graphs.

De Bruijn Graphs

• De Bruijn graph: Given a set of edge-
labeled graphs, de Bruijn graph of this set
is the result of “gluing” edges with the same
label in all graphs in the set.

De Bruijn Graphs

• De Bruijn graph: Given a set of edge-
labeled graphs, de Bruijn graph of this set
is the result of “gluing” edges with the same
label in all graphs in the set.

• Did we see de Bruijn graphs today?

De Bruijn graph of a path de Bruijn graph of another path

22

De Bruijn Graphs

• De Bruijn graph: Given a set of edge-
labeled graphs, de Bruijn graph of this set
is the result of “gluing” edges with the same
label in all graphs in the set.

• Did we see de Bruijn graphs today?

De Bruijn Graphs

• De Bruijn graph: Given a set of edge-
labeled graphs, de Bruijn graph of this set
is the result of “gluing” edges with the same
label in all graphs in the set.

• Did we see de Bruijn graphs today?

• Breakpoint graph of permutations P and Q
==

de Bruijn graph of P-cycle and Q-cycle

De Bruijn Graphs

• Breakpoint graph of permutations P and Q
==

de Bruijn graph of P-cycle and Q-cycle

• Breakpoint graph of any genomes P and Q
(with multiple gene copies)

De Bruijn Graphs

• Breakpoint graph of permutations P and Q
==

de Bruijn graph of P-cycle and Q-cycle

• Breakpoint graph of any genomes P and Q
(with multiple gene copies)

==
de Bruijn graph of P-cycle and Q-cycle

Overview

Genome correspondence
Chromosome evolution

Genome rearrangements
Sorting by reversals
Genome duplication

Duplicate gene evolution
Duplication and rearrangements

23

Greedy Algorithms
And

Genome Rearrangements

Outline

• Transforming Cabbage into Turnip
• Genome Rearrangements
• Sorting By Reversals
• Pancake Flipping Problem
• Greedy Algorithm for Sorting by Reversals
• Approximation Algorithms
• Breakpoints: a Different Face of Greed

Outline CHANGE

• Genome Rearrangements – give picture of splotch
mouse

Turnip vs Cabbage: Look and Taste Different• Although cabbages and turnips share a recent
common ancestor, they look and taste different

Turnip vs Cabbage: Comparing Gene Sequences
Yields No Evolutionary Information

Turnip vs Cabbage: Almost Identical mtDNA gene sequences

• In 1980s Jeffrey Palmer studied evolution of plant
organelles by comparing mitochondrial genomes
of the cabbage and turnip

• 99% similarity between genes
• These surprisingly identical gene sequences

differed in gene order
• This study helped pave the way to analyzing

genome rearrangements in molecular evolution

24

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Before

After

Evolution is manifested as the divergence in
gene order

Transforming Cabbage into Turnip

25

• What are the similarity blocks and how to find them?
• What is the architecture of the ancestral genome?
• What is the evolutionary scenario for transforming one

genome into the other?

Unknown ancestor
~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements History of Chromosome X

Rat Consortium, Nature, 2004

Reversals

• Blocks represent conserved genes.

1 32

4

10

5
6

8
9

7
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Reversals

1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

� Blocks represent conserved genes.
� In the course of evolution or in a clinical context, blocks 1,…,10

could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

Reversals and Breakpoints

1 32

4

10

5
6

8
9

7
1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).

Reversals: Example

5’ ATGCCTGTACTA 3’
3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’
3’ TACATGTCCGAT 5’

Break
and
Invert

26

Types of Rearrangements

Reversal
1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation
1 2 3
44 5 6

1 2 6
4 5 3

1 2 3 4
5 6

1 2 3 4 5 6

Fusion

Fission

Comparative Genomic Architectures: Mouse vs Human
Genome• Humans and mice have

similar genomes, but their
genes are ordered
differently

• ~245 rearrangements

– Reversals
– Fusions
– Fissions
– Translocation

Waardenburg’s Syndrome: Mouse Provides Insight into Human Genetic
Disorder

• Waardenburg’s syndrome is characterized by pigmentary dysphasia
• Gene implicated in the disease was linked to human chromosome 2

but it was not clear where exactly it is located on chromosome 2

Waardenburg’s syndrome and splotch mice

• A breed of mice (with splotch gene) had similar
symptoms caused by the same type of gene as in
humans

• Scientists succeeded in identifying location of gene
responsible for disorder in mice

• Finding the gene in mice gives clues to where the
same gene is located in humans

Comparative Genomic Architecture of Human and Mouse Genomes

To locate where
corresponding
gene is in humans,
we have to analyze
the relative
architecture of
human and mouse
genomes

