WELCOME!

(download slides and .py files from the class site to follow along)

6.100L Lecture 1

Ana Bell

TODAY

- Course info
- What is computation
- Python basics
 - Mathematical operations
 - Python variables and types

NOTE: slides and code files up before each lecture

- Highly encourage you to download them before class
- Take notes and run code files when I do
- Do the in-class "You try it" breaks
- Class will not be recorded
- Class will be live-Zoomed for those sick/quarantine

WHY COME TO CLASS?

- You get out of this course what you put into it
- Lectures
 - Intuition for concept
 - **Teach** you the concept
 - Ask me questions!
 - Examples of concept
 - Opportunity to practice practice practice
 - Repeat

TOPICS

- Solving problems using computation
- Python programming language
- Organizing modular programs
- Some simple but important algorithms
- Algorithmic complexity

LET'S GOOOOO!

TYPES of KNOWLEDGE

- Declarative knowledge is statements of fact
- Imperative knowledge is a recipe or "how-to"
- Programming is about writing recipes to generate facts

NUMERICAL EXAMPLE

- Square root of a number x is y such that y*y = x
- Start with a guess, g
 - 1) If g * g is close enough to x, stop and say g is the answer
 - 2) Otherwise make a new guess by averaging $g \ \text{and} \ x/g$
 - 3) Using the new guess, repeat process until close enough
- Let's try it for x = 16 and an initial guess of 3

g	d,a	x/g	(g+x/g)/2
3	9	16/3	4.17

NUMERICAL EXAMPLE

- Square root of a number x is y such that y*y = x
- Start with a guess, g
 - 1) If g * g is close enough to x, stop and say g is the answer
 - 2) Otherwise make a new guess by averaging $g \ \text{and} \ x/g$
 - 3) Using the new guess, repeat process until close enough
- Let's try it for x = 16 and an initial guess of 3

g	a,a	x/g	(g+x/g)/2
3	9	16/3	4.17
4.17	17.36	3.837	4.0035

NUMERICAL EXAMPLE

- Square root of a number x is y such that y*y = x
- Start with a guess, g
 - 1) If g * g is close enough to x, stop and say g is the answer
 - 2) Otherwise make a new guess by averaging $g \ \text{and} \ x/g$
 - 3) Using the new guess, repeat process until close enough
- Let's try it for x = 16 and an initial guess of 3

g	g*g	x/g	(g+x/g)/2
3	9	16/3	4.17
4.17	17.36	3.837	4.0035
4.0035	16.0277	3.997	4.000002

WE HAVE an ALGORITHM

- 1) Sequence of simple steps
- 2) Flow of control process that specifies when each step is executed
- 3) A means of determining when to stop

ALGORITHMS are RECIPES / RECIPES are ALGORITHMS

- Bake cake from a box
 - 1) Mix dry ingredients
 - 2) Add eggs and milk
 - 3) Pour mixture in a pan
 - 4) Bake at 350F for 5 minutes
 - 5) Stick a toothpick in the cake
 - 6a) If toothpick does not come out clean, repeat step 4 and 5
 - 6b) Otherwise, take pan out of the oven
 - 7) Eat

COMPUTERS are MACHINES that EXECUTE ALGORITHMS

- Two things computers do:
 - Performs simple operations 100s of billions per second!
 - Remembers results

100s of gigabytes of storage!

- What kinds of calculations?
 - Built-in to the machine, e.g., +
 - Ones that you define as the programmer
- The BIG IDEA here?

A COMPUTER WILL ONLY DO WHAT YOU TELL IT TO DO

COMPUTERS are MACHINES that EXECUTE ALGORITHMS

Fixed program computer

- Fixed set of algorithms
- What we had until 1940's
- Stored program computer
 - Machine stores and executes instructions

• Key insight: Programs are no different from other kinds of data

STORED PROGRAM COMPUTER

- Sequence of instructions stored inside computer
 - Built from predefined set of primitive instructions
 - 1) Arithmetic and logical
 - 2) Simple tests
 - 3) Moving data
- Special program (interpreter) executes each instruction in order
 - Use tests to change flow of control through sequence
 - Stops when it runs out of instructions or executes a halt instruction

BASIC PRIMITIVES

Turing showed that you can compute anything with a very simple machine with only 6 primitives: left, right, print, scan, erase, no op

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

- Real programming languages have
 - More convenient set of primitives
 - Ways to combine primitives to create new primitives
- Anything computable in one language is computable in any other programming language

Primitive constructs

- English: words
- Programming language: numbers, strings, simple operators

Syntax

- English: "cat dog boy" → not syntactically valid
 "cat hugs boy" → syntactically valid
- Programming language: "hi"5 → not syntactically valid "hi"*5 → syntactically valid

Static semantics: which syntactically valid strings have meaning

■ English: "I are hungry" → syntactically valid

but static semantic error

■ PL: "hi"+5 → syntactically valid

but static semantic error

- Semantics: the meaning associated with a syntactically correct string of symbols with no static semantic errors
- English: can have many meanings "The chicken is ready to eat."
- Programs have only one meaning
- But the meaning may not be what programmer intended

WHERE THINGS GO WRONG

Syntactic errors

Common and easily caught

Static semantic errors

- Some languages check for these before running program
- Can cause unpredictable behavior
- No linguistic errors, but different meaning than what programmer intended
 - Program crashes, stops running
 - Program runs forever
 - Program gives an answer, but it's wrong!

PYTHON PROGRAMS

- A **program** is a sequence of definitions and commands
 - Definitions evaluated
 - Commands **executed** by Python interpreter in a shell
- Commands (statements) instruct interpreter to do something
- Can be typed directly in a shell or stored in a file that is read into the shell and evaluated
 - Problem Set 0 will introduce you to these in Anaconda

PROGRAMMING ENVIRONMENT: ANACONDA

OBJECTS

- Programs manipulate data objects
- Objects have a type that defines the kinds of things programs can do to them
 - **3**0
 - Is a number
 - We can add/sub/mult/div/exp/etc
 - 'Ana'
 - Is a sequence of characters (aka a string)
 - We can grab substrings, but we can't divide it by a number

OBJECTS

Scalar (cannot be subdivided)

- Numbers: 8.3, 2
- Truth value: True, False

Non-scalar (have internal structure that can be accessed)

- Lists
- Dictionaries
- Sequence of characters: "abc"

SCALAR OBJECTS

- int represent integers, ex. 5, -100
- float represent real numbers, ex. 3.27, 2.0
- bool represent Boolean values True and False
- NoneType special and has one value, None
- Can use type() to see the type of an object

int

float

0.0, ..., 0.21, ... 1.0, ..., 3.14, ... -1.22, ..., -500.0 , ...

bool

True False

NoneType

None

6.100L Lecture 1

In your console, find the type of:

- **1234**
- **8.**99
- 9.0
- True
- False

TYPE CONVERSIONS (CASTING)

Can convert object of one type to another

- float(3) casts the int 3 to float 3.0
- Int(3.9) casts (note the truncation!) the float 3.9 to int 3
- Some operations perform implicit casts
 - round(3.9) returns the int 4

- In your console, find the type of:
 - float(123)
 - round(7.9)
 - float(round(7.2))
 - int(7.2)
 - int(7.9)

EXPRESSIONS

Combine objects and operators to form expressions

- **3+2**
- **5/3**
- An expression has a value, which has a type
 - 3+2 has value 5 and type int
 - 5/3 has value 1.666667 and type float
- Python evaluates expressions and stores the value. It doesn't store expressions!
- Syntax for a simple expression
 <object> <operator> <object>

BIG IDEA

Replace complex expressions by ONE value

Work systematically to evaluate the expression.

EXAMPLES

- In your console, find the values of the following expressions:
 - (13-4) / (12*12)
 - type(4*3)
 - type(4.0*3)
 - int(1/2)

OPERATORS on int and float

■ i//j → floor division

What is type of output?

- i%j → the remainder when i is divided by j
- i**j → i to the power of j

SIMPLE OPERATIONS

- Parentheses tell Python to do these operations first
 - Like math!
- Operator precedence without parentheses

* *

- * / % executed left to right, as appear in expression
- + executed left to right, as appear in expression

SO MANY OBJECTS, what to do with them?!

VARIABLES

Computer science variables are different than math variables

square roots

- Math variables
 - Abstract
 - Can represent many values

a + 2 = b -X * x represents all Х V

CS variables

- Is bound to one single value at a given time
- Can be bound to an expression (but expressions evaluate to one value!)

one value

6.100L Lecture 1

BINDING VARIABLES to VALUES

- In CS, the equal sign is an assignment
 - One value to one variable name
 - Equal sign is not equality, not "solve for x"
- An assignment binds a value to a name

- Step 1: Compute the value on the right hand side (the VALUE)
 - Value stored in computer memory
- Step 2: Store it (bind it) to the left hand side (the VARIABLE)
 - Retrieve value associated with name by invoking the name (typing it out)

- Which of these are allowed in Python? Type them in the console to check.
 - x = 6
 - 6 = x
 - x*y = 3+4
 - xy = 3+4

ABSTRACTING EXPRESSIONS

- Why give names to values of expressions?
 - To reuse names instead of values
 - Makes code easier to read and modify
- Choose variable names wisely
 - Code needs to read
 - Today, tomorrow, next year
 - By you and others
 - You'll be fine if you stick to letters, underscores, don't start with a number

comments start with a # and comments start of code executed are not part of code executed - used to tell others what your - used to tell others what code is doing

WHAT IS BEST CODE STYLE?

#do calculations
a = 355/113 *(2.2**2)
c = 355/113 *(2.2*2)

0K

best

p = 355/113 r = 2.2 #multiply p with r squared a = p*(r**2) #multiply p with r times 2 c = p*(r*2)

```
#calculate area and circumference of a circle
#using an approximation for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)
```

CHANGE BINDINGS

- Can re-bind variable names using new assignment statements
- Previous value may still stored in memory but lost the handle for it
- Value for area does not change until you tell the computer to do the calculation again

```
pi = 3.14
radius = 2.2
area = pi*(radius**2)
radius = radius+1
```


BIG IDEA

Lines are evaluated one after the other

No skipping around, yet.

We'll see how lines can be skipped/repeated later.

These 3 lines are executed in order. What are the values of meters and feet variables at each line in the code?

meters = 100

feet = 3.2808 * meters

meters = 200

ANSWER:

Let's use PythonTutor to figure out what is going on

Follow along with this Python Tutor LINK

Where did we tell Python to (re)calculate feet?

- Swap values of x and y without binding the numbers directly.
 Debug (aka fix) this code.
- x = 1
- y = 2
- у = х
- х = у

Python Tutor to the rescue?

ANSWER:

SUMMARY

- Objects
 - Objects in memory have types.
 - Types tell Python what operations you can do with the objects.
 - Expressions evaluate to one value and involve objects and operations.
 - Variables bind names to objects.
 - sign is an assignment, for ex. var = type(5*4)
- Programs
 - Programs only do what you tell them to do.
 - Lines of code are executed in order.
 - Good variable names and comments help you read code later.

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.