
ALIASING,
CLONING

(download slides and .py files to follow along)
6.100L Lecture 11

Ana Bell

1

MAKING A COPY OF THE LIST

 Can make a copy of a list object by duplicating all elements
(top-level) into a new list object
 Lcopy = L[:]

 Equivalent to looping over L and appending each element to Lcopy
 This does not make a copy of elements that are lists (will see how to do

this at the end of this lecture)

6.100L Lecture 11

Loriginal = [4,5,6]
Lnew = Loriginal[:]

Loriginal [4,5,6]

Lnew [4,5,6]

2

YOU TRY IT!
 Write a function that meets the specification.
 Hint. Make a copy to save the elements. The use L.clear() to

empty out the list and repopulate it with the ones you’re
keeping.

def remove_all(L, e):

"""

L is a list

Mutates L to remove all elements in L that are equal to e

Returns None

"""

L = [1,2,2,2]

remove_all(L, 2)

print(L) # prints [1]

6.100L Lecture 11
3

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]

a = L.pop()  returns 0 and mutates L = [1,3,7]
del(L[1]) mutates L = [1,3,7,0]

OPERATION ON LISTS: remove

 Delete element at a specific index with del(L[index])
 Remove element at end of list with L.pop(), returns the

removed element (can also call with specific index:
L.pop(3))
 Remove a specific element with L.remove(element)

• Looks for the element and removes it (mutating the list)
• If element occurs multiple times, removes first occurrence
• If element not in list, gives an error

6.100L Lecture 11

L = [2,1,3,6,3,7,0] # do below in order

4

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

 Rewrite the code to remove e as long as we still had it in the list
 It works well!

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
while e in L:

L.remove(e)

6.100L Lecture 11
5

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

 What if the code was this:

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11
6

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2,2]

elem

7

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2,2]

elem

8

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2,2]

elem

[1,2,2]

9

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2]

elem

10

EXERCISE WITH REMOVE INSTEAD
OF COPY AND CLEAR

 It’s not correct! We removed items as we iterated over the list!

def remove_all(L, e):
"""
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L) # should print [1]

6.100L Lecture 11

L [1,2,2]

elem

[1,2]

11

TRICKY EXAMPLES OVERVIEW

 TRICKY EXAMPLE 1:
 A loop iterates over indices of L and mutates L each time (adds more

elements).

 TRICKY EXAMPLE 2:
 A loop iterates over L’s elements directly and mutates L each time (adds

more elements).

 TRICKY EXAMPLE 3:
 A loop iterates over L’s elements directly but reassigns L to a new

object each time

 TRICKY EXAMPLE 4:
 A loop iterates over L’s elements directly and mutates L by removing

elements.

6.100L Lecture 11
12

TRICKY EXAMPLE 4
PYTHON TUTOR LINK to see step-by-step

 Want to mutate L1 to remove any elements that are also in L2
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 L1 is [20,30,40] not [30,40] Why?
 You are mutating a list as you are iterating over it
 Python uses an internal counter. Tracks of index in the loop over list L1
 Mutating changes the list but Python doesn’t update the counter
 Loop never sees element 20

6.100L Lecture 11
13

https://pythontutor.com/visualize.html#code=def%20remove_dups%28L1,%20L2%29%3A%0A%20%20%20%20for%20e%20in%20L1%3A%0A%20%20%20%20%20%20%20if%20e%20in%20L2%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20L1.remove%28e%29%0A%0AL1%20%3D%20%5B10,%2020,%2030,%2040%5D%0AL2%20%3D%20%5B10,%2020,%2050,%2060%5D%0Aremove_dups%28L1,%20L2%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

14

[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

15

[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

16

[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE

6.100L Lecture 11

def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

17

MUTATION AND ITERATION WITH CLONE
L1_copy = L1[:]

 Make a clone with [:]
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 New version works!
 Iterate over a copy
 Mutate original list, not the copy
 Indexing is now consistent

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

18

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

19

[20,30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

20

[20,30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

21

[30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

22

[30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

23

[30,40]

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]

24

ALIASING

 City may be known by many names
 Attributes of a city

 Small, tech-savvy

 All nicknames point to the same city
• Add new attribute to one nickname …

6.100L Lecture 11

Boston
The Hub
Beantown
Athens of America

Boston small tech-savvy

The Hub small tech-savvy

Beantown small tech-savvy

snowy

snowy

snowy

… all the aliases refer to the old attribute and all the new ones

25

MUTATION AND ITERATION WITH ALIAS
L1_copy = L1

 Assignment (= sign) on mutable obj creates an alias, not a clone

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 Using a simple assignment without making a copy
 Makes an alias for list (same list object referenced by another name)
 It’s like iterating over L itself, it doesn’t work!

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

26

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

[20,30,40]

L1_copy

27

BIG IDEA
When you pass a list as a
parameter to a function,
you are making an alias.
The actual parameter (from the function call) is an alias for
the formal parameter (from the function definition).

6.100L Lecture 11
28

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

La = [10, 20, 30, 40]
Lb = [10, 20, 50, 60]
remove_dups(La, Lb)
print(La) La [10,20,30,40]

Lb [10,20,50,60]

e

[20,30,40]

L1_copy

L1

L2

29

ALIASES,
SHALLOW COPIES, AND
DEEP COPIES WITH
MUTABLE ELEMENTS

6.100L Lecture 11
30

CONTROL COPYING

 Assignment just creates a new pointer to same object
old_list = [[1,2],[3,4],[5,'foo']]

new_list = old_list

new_list[2][1] = 6

print("New list:", new_list)

print("Old list:", old_list)

 So mutating one object changes the other

6.100L Lecture 11

old_list

new_list

[, ,]

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6]]

[1,2] [3,4] [5,‘foo’][5,6]

31

CONTROL COPYING

 Suppose we want to create a copy of a list, not just a shared
pointer
 Shallow copying does this at the top level of the list

 Equivalent to syntax [:]
 Any mutable elements are NOT copied

 Use this when your list contains immutable objects only
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
32

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

6.0001 LECTURE 5

old_list

new_list
[, ,]

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6]]

[, ,]

[1,2] [3,4] [5,6]

33

CONTROL COPYING

 Now we mutate the top level structure
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
34

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)
New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6],[7,8]]

6.0001 LECTURE 5

old_list

new_list
[, ,]

[, ,]

[1,2] [3,4] [5,6] [7,8]

[, , ,]

35

CONTROL COPYING

 But if we change an element in one of the sub-structures, they
are shared!
 If your elements are not mutable then this is not a problem
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
36

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

New list: [[1,2],[3,9],[5,6]]

6.0001 LECTURE 5

old_list

new_list
[, ,]

[, ,]

[1,2] [3,4] [5,6] [7,8]

[, , ,]

Old list: [[1,2],[3,9],[5,6],[7,8]]

[3,9]

37

CONTROL COPYING

 If we want all structures to be new copies, we need a deep
copy
 Use deep copy when your list might have mutable elements to

ensure every structure at every level is copied
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
38

6.100L Lecture 11

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,9],[5,6],[7,8]]

old_list

new_list

[, ,]

[, ,]

[1,2] [3,4] [5,6] [7,8]

[, , ,]

[3,9]

[1,2] [3,4] [5,6]

39

LISTS in MEMORY

 Separate the idea of the object vs. the name we give an object
 A list is an object in memory
 Variable name points to object

 Lists are mutable and behave differently than immutable types
 Using equal sign between mutable objects creates aliases

 Both variables point to the same object in memory
 Any variable pointing to that object is affected by mutation of object,

even if mutation is by referencing another name

 If you want a copy, you explicitly tell Python to make a copy
 Key phrase to keep in mind when working with lists is side

effects, especially when dealing with aliases – two names
pointing to the same structure in memory
 Python Tutor is your best friend to help sort this out!

http://www.pythontutor.com/
6.100L Lecture 11

40

http://www.pythontutor.com/

WHY LISTS and TUPLES?

 If mutation can cause so many problems, why do we even
want to have lists, why not just use tuples?
 Efficiency – if processing very large sequences, don’t want to have

to copy every time we change an element

 If lists basically do everything that tuples do, why not just
have lists?
 Immutable structures can be very valuable in context of other

object types
 Don’t want to accidentally have other code mutate some

important data, tuples safeguard against this
 They can be a bit faster

6.100L Lecture 11
41

AT HOME TRACING
EXAMPLES SHOWCASING
ALIASING AND CLONING

6.100L Lecture 11
42

ALIASES

 hot is an alias for warm – changing one changes the other!
 append() has a side effect

6.100L Lecture 11
43

ALIASES

 hot is an alias for warm – changing one changes the other!
 append() has a side effect

6.100L Lecture 11
44

CLONING A LIST

 Create a new list and copy every element using a clone
chill = cool[:]

6.100L Lecture 11
45

CLONING A LIST

 Create a new list and copy every element using a clone
chill = cool[:]

6.100L Lecture 11
46

CLONING A LIST

 Create a new list and copy every element using a clone
chill = cool[:]

6.100L Lecture 11
47

LISTS OF LISTS
OF LISTS OF….
 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
48

LISTS OF LISTS
OF LISTS OF….
 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
49

LISTS OF LISTS
OF LISTS OF….
 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
50

LISTS OF LISTS
OF LISTS OF….
 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
51

LISTS OF LISTS
OF LISTS OF….
 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
52

LISTS OF LISTS
OF LISTS OF….
 Can have nested lists
 Side effects still

possible after mutation

6.100L Lecture 11
53

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

54

https://ocw.mit.edu
https://ocw.mit.edu/terms

	ALIASING,�CLONING�(download slides and .py files to follow along)
	MAKING A COPY OF THE LIST
	Slide Number 3
	OPERATION ON LISTS: remove
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	EXERCISE WITH REMOVE INSTEAD OF COPY AND CLEAR
	TRICKY EXAMPLES OVERVIEW
	TRICKY EXAMPLE 4�PYTHON TUTOR LINK to see step-by-step
	MUTATION AND ITERATION WITHOUT CLONE
	MUTATION AND ITERATION WITHOUT CLONE
	MUTATION AND ITERATION WITHOUT CLONE
	MUTATION AND ITERATION WITHOUT CLONE
	MUTATION AND ITERATION WITH CLONE�L1_copy = L1[:]
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	ALIASING
	MUTATION AND ITERATION WITH ALIAS�L1_copy = L1
	Slide Number 28
	When you pass a list as a parameter to a function, you are making an alias.
	Slide Number 30
	ALIASES,�SHALLOW COPIES, AND�DEEP COPIES WITH MUTABLE ELEMENTS
	CONTROL COPYING
	CONTROL COPYING
	Slide Number 34
	CONTROL COPYING
	Slide Number 36
	CONTROL COPYING
	Slide Number 38
	CONTROL COPYING
	Slide Number 40
	LISTS in MEMORY
	WHY LISTS and TUPLES?
	AT HOME TRACING EXAMPLES SHOWCASING ALIASING AND CLONING
	ALIASES
	ALIASES
	CLONING A LIST
	CLONING A LIST
	CLONING A LIST
	LISTS OF LISTS �OF LISTS OF….
	LISTS OF LISTS �OF LISTS OF….
	LISTS OF LISTS �OF LISTS OF….
	LISTS OF LISTS �OF LISTS OF….
	LISTS OF LISTS �OF LISTS OF….
	LISTS OF LISTS �OF LISTS OF….
	cover-slides.pdf
	cover_h.pdf
	Blank Page

