
ALIASING,
CLONING

(download slides and .py files to follow along)
6.100L Lecture 11

Ana Bell
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MAKING A COPY OF THE LIST

 Can make a copy of a list object by duplicating all elements 
(top-level) into a new list object
 Lcopy = L[:]

 Equivalent to looping over L and appending each element to Lcopy
 This does not make a copy of elements that are lists (will see how to do 

this at the end of this lecture)
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Loriginal = [4,5,6]
Lnew = Loriginal[:]

Loriginal [4,5,6]

Lnew [4,5,6]
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YOU TRY IT!
 Write a function that meets the specification. 
 Hint. Make a copy to save the elements. The use L.clear() to 

empty out the list and repopulate it with the ones you’re 
keeping.

def remove_all(L, e):

""" 

L is a list

Mutates L to remove all elements in L that are equal to e

Returns None

""" 

L = [1,2,2,2]

remove_all(L, 2)

print(L)     # prints [1]

6.100L Lecture 11
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L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0] 

a = L.pop()  returns 0 and mutates L = [1,3,7]
del(L[1]) mutates L = [1,3,7,0]

OPERATION ON LISTS: remove

 Delete element at a specific index with del(L[index])
 Remove element at end of list with L.pop(), returns the 

removed element (can also call with specific index: 
L.pop(3))
 Remove a specific element with L.remove(element)

• Looks for the element and removes it (mutating the list)
• If element occurs multiple times, removes first occurrence
• If element not in list, gives an error
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L = [2,1,3,6,3,7,0] # do below in order
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EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

 Rewrite the code to remove e as long as we still had it in the list
 It works well!

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
while e in L:

L.remove(e)

6.100L Lecture 11
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EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

 What if the code was this:

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L)    # should print [1]
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EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L)    # should print [1]
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L [1,2,2,2]

elem
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EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L)    # should print [1]
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L [1,2,2,2]

elem
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EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L)    # should print [1]
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L [1,2,2,2]

elem

[1,2,2]

9



EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L)    # should print [1]
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L [1,2,2]

elem
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EXERCISE WITH REMOVE INSTEAD 
OF COPY AND CLEAR

 It’s not correct! We removed items as we iterated over the list!

def remove_all(L, e):
""" 
L is a list
Mutates L to remove all elements in L that are equal to e
Returns None.
"""
for elem in L:

if elem == e:
L.remove(e)

L = [1,2,2,2]
remove_all(L, 2)
print(L)    # should print [1]
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L [1,2,2]

elem

[1,2]
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TRICKY EXAMPLES OVERVIEW

 TRICKY EXAMPLE 1:
 A loop iterates over indices of L and mutates L each time (adds more 

elements). 

 TRICKY EXAMPLE 2:
 A loop iterates over L’s elements directly and mutates L each time (adds 

more elements).

 TRICKY EXAMPLE 3:
 A loop iterates over L’s elements directly but reassigns L to a new 

object each time

 TRICKY EXAMPLE 4:
 A loop iterates over L’s elements directly and mutates L by removing 

elements. 

6.100L Lecture 11
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TRICKY EXAMPLE 4
PYTHON TUTOR LINK to see step-by-step

 Want to mutate L1 to remove any elements that are also in L2 
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 L1 is [20,30,40] not [30,40] Why? 
 You are mutating a list as you are iterating over it
 Python uses an internal counter. Tracks of index in the loop over list L1
 Mutating changes the list but Python doesn’t update the counter
 Loop never sees element 20

6.100L Lecture 11
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MUTATION AND ITERATION WITHOUT CLONE
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def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e
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[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE
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def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e
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[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE
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def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e
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[20,30,40]

MUTATION AND ITERATION WITHOUT CLONE
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def remove_dups(L1, L2):
for e in L1:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e
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MUTATION AND ITERATION WITH CLONE
L1_copy = L1[:]

 Make a clone with [:]
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 New version works!
 Iterate over a copy
 Mutate original list, not the copy
 Indexing is now consistent

6.100L Lecture 11

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]
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[20,30,40]
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]
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[20,30,40]
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]
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[30,40]
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]
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[30,40]
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]
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[30,40]
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1

L2 [10,20,50,60]

e

L1_copy [10,20,30,40]
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ALIASING

 City may be known by many names
 Attributes of a city

 Small, tech-savvy

 All nicknames point to the same city
• Add new attribute to one nickname …
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Boston
The Hub
Beantown
Athens of America

Boston small tech-savvy

The Hub small tech-savvy

Beantown small tech-savvy

snowy

snowy

snowy

… all the aliases refer to the old attribute and all the new ones
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MUTATION AND ITERATION WITH ALIAS
L1_copy = L1 

 Assignment (= sign) on mutable obj creates an alias, not a clone

def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

 Using a simple assignment without making a copy
 Makes an alias for list (same list object referenced by another name)
 It’s like iterating over L itself, it doesn’t work!
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def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)
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def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

L1 = [10, 20, 30, 40]
L2 = [10, 20, 50, 60]
remove_dups(L1, L2)

L1 [10,20,30,40]

L2 [10,20,50,60]

e

[20,30,40]

L1_copy

27



BIG  IDEA
When you pass a list as a 
parameter to a function, 
you are making an alias. 
The actual parameter (from the function call) is an alias for 
the formal parameter (from the function definition).

6.100L Lecture 11
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def remove_dups(L1, L2):
L1_copy = L1
for e in L1_copy:

if e in L2:
L1.remove(e)

La = [10, 20, 30, 40]
Lb = [10, 20, 50, 60]
remove_dups(La, Lb)
print(La) La [10,20,30,40]

Lb [10,20,50,60]

e

[20,30,40]

L1_copy

L1

L2
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ALIASES,
SHALLOW COPIES, AND
DEEP COPIES WITH 
MUTABLE ELEMENTS

6.100L Lecture 11
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CONTROL COPYING

 Assignment just creates a new pointer to same object
old_list = [[1,2],[3,4],[5,'foo']]

new_list = old_list

new_list[2][1] = 6

print("New list:", new_list)

print("Old list:", old_list)

 So mutating one object changes the other

6.100L Lecture 11

old_list

new_list

[  ,   ,   ]

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6]]

[1,2] [3,4] [5,‘foo’][5,6]
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CONTROL COPYING

 Suppose we want to create a copy of a list, not just a shared 
pointer
 Shallow copying does this at the top level of the list

 Equivalent to syntax [:]
 Any mutable elements are NOT copied

 Use this when your list contains immutable objects only
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
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old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

6.0001 LECTURE 5

old_list

new_list
[  ,  ,  ]

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6]]

[  ,   ,   ]

[1,2] [3,4] [5,6]
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CONTROL COPYING

 Now we mutate the top level structure
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
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old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)
New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,4],[5,6],[7,8]]

6.0001 LECTURE 5

old_list

new_list
[  ,  ,  ]

[  ,   ,   ]

[1,2] [3,4] [5,6] [7,8]

[  ,   ,   ,   ]
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CONTROL COPYING

 But if we change an element in one of the sub-structures, they 
are shared! 
 If your elements are not mutable then this is not a problem
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
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old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

New list: [[1,2],[3,9],[5,6]]

6.0001 LECTURE 5

old_list

new_list
[  ,  ,  ]

[  ,   ,   ]

[1,2] [3,4] [5,6] [7,8]

[  ,   ,   ,   ]

Old list: [[1,2],[3,9],[5,6],[7,8]]

[3,9]
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CONTROL COPYING

 If we want all structures to be new copies, we need a deep 
copy
 Use deep copy when your list might have mutable elements to 

ensure every structure at every level is copied
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

6.100L Lecture 11
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old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

New list: [[1,2],[3,4],[5,6]]

Old list: [[1,2],[3,9],[5,6],[7,8]]

old_list

new_list

[  ,  ,  ]

[  ,   ,   ]

[1,2] [3,4] [5,6] [7,8]

[  ,   ,   ,   ]

[3,9]

[1,2] [3,4] [5,6]
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LISTS in MEMORY

 Separate the idea of the object vs. the name we give an object
 A list is an object in memory
 Variable name points to object

 Lists are mutable and behave differently than immutable types
 Using equal sign between mutable objects creates aliases

 Both variables point to the same object in memory
 Any variable pointing to that object is affected by mutation of object, 

even if mutation is by referencing another name

 If you want a copy, you explicitly tell Python to make a copy
 Key phrase to keep in mind when working with lists is side 

effects, especially when dealing with aliases – two names 
pointing to the same structure in memory
 Python Tutor is your best friend to help sort this out!

http://www.pythontutor.com/
6.100L Lecture 11
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WHY LISTS and TUPLES?

 If mutation can cause so many problems, why do we even 
want to have lists, why not just use tuples?
 Efficiency – if processing very large sequences, don’t want to have 

to copy every time we change an element

 If lists basically do everything that tuples do, why not just 
have lists?
 Immutable structures can be very valuable in context of other 

object types
 Don’t want to accidentally have other code mutate some 

important data, tuples safeguard against this
 They can be a bit faster

6.100L Lecture 11
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AT HOME TRACING 
EXAMPLES SHOWCASING 
ALIASING AND CLONING

6.100L Lecture 11
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ALIASES

 hot is an alias for warm – changing one changes the other!
 append() has a side effect

6.100L Lecture 11
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ALIASES

 hot is an alias for warm – changing one changes the other!
 append() has a side effect
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CLONING A LIST

 Create a new list and copy every element using a clone 
chill = cool[:]

6.100L Lecture 11
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CLONING A LIST

 Create a new list and copy every element using a clone 
chill = cool[:]
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CLONING A LIST

 Create a new list and copy every element using a clone 
chill = cool[:]
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LISTS OF LISTS 
OF LISTS OF….
 Can have nested lists
 Side effects still 

possible after mutation
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LISTS OF LISTS 
OF LISTS OF….
 Can have nested lists
 Side effects still 

possible after mutation
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LISTS OF LISTS 
OF LISTS OF….
 Can have nested lists
 Side effects still 

possible after mutation
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LISTS OF LISTS 
OF LISTS OF….
 Can have nested lists
 Side effects still 

possible after mutation
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LISTS OF LISTS 
OF LISTS OF….
 Can have nested lists
 Side effects still 

possible after mutation

6.100L Lecture 11
52



LISTS OF LISTS 
OF LISTS OF….
 Can have nested lists
 Side effects still 

possible after mutation
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