

Recitation 3 Notes:
30 September, 2022

Reminders:
- MQ4 next Wednesday 10/5
- PS1 due next Wednesday

Lecture 4 Recap: Simple Programs, Intro to Binary Numbers

1. Simple Programs
- Guess-and-check algorithms are one way to find a solution to a problem through exhaustive

enumeration.
- Guess solution -> evaluate guess -> make educated adjustment to the guess and repeat ….
- Repeat these steps until you find a solution or have exhausted your set of possible solutions.
- Example programs: Guessing Square or Cube roots.

2. Intro to Binary Numbers
- Computers use binary numbers.
- Everything is stored in one of two states – either 0 or 1.
- Binary numbers are efficient and easy to perform operations on.
- A sequence of binary numbers e.g 00110011 is called a sequence of bits.
- Base 10 numbers can be converted to Binary numbers and visa versa.

First eight bits are the powers of two:
128, 64, 32, 16, 8, 4, 2, 1
So, in the first 8 bits we can store number up to (but not including) 256.

Example: Convert base 10 number 56 into binary representation.
56 = 00111000

Example2: Convert 00011001 into base 10.
00011001 = 1*1 + 1*8 + 1*16 = 25

Lecture 5 Recap: Floats, Fractions and Approximation Algorithms
1. Floats
- Python uses “floating points” to approximate real numbers.
- Operations on floats introduce a very small error.
- Many smaller errors turn into a bigger error.

2. Fractions & Approximation
- We use the same idea to store fractions in binary by raising 2 to the power of some negative

number.

Ultimately, a computer represents everything in bits. So, numbers with many digits trailing the
decimal are often approximated.
As a result, be careful when comparing and working with floats.

1

3. Approximation Algorithms
- Like guess and check but the goal is to find an answer that is considered “good enough”, and

not necessarily exact.
- Guess an answer -> check if it’s “good enough” -> if not, make an educated change your

guess -> repeat until your guess is “good enough”
- Key parameters: increment, epsilon, number of guesses etc…
- Remember to keep in mind what happens if you overshoot the close-enough stopping

condition – don’t want an infinite loop.

Lecture 6 Recap: Bisection Search, Newton-Raphson
1. Bisection Search
● Search algorithm applied to problems with an inherent order to the range of possible

answers (e.g an ordered list of numbers).
● Step to a simple binary search algorithm:

○ Guess the midpoint of the interval
○ If not the answer, check if answer is greater or less than the midpoint
○ Change interval
○ Repeat

● This method cuts the set of possible answer to check in half at each stage → logarithmic
growth characteristic → more efficient algorithm

2. Newton-Raphson
● General approximation algorithm to find the roots of a polynomial in one variable
● Given polynomial function p(x), the goal is to solve for r such that p(r) = 0.
● N-R showed that:

○ If g is an approximation to the root, r, then
g - p(g)/p’(g)

Is a better approximation, where p’ is the derivative of p.

Lecture 7: Functions and Scope
Functions
• Functions capture computation within a black box.
• They allow us to reuse code and write programs in a more concise way.
• Functions take in input and return outputs.
• Inputs are cased as parameters of the function and outputs are returned using the return

statement.
• Calling a function

My_output = function_name(arg1, arg2, …, argN)
• When called, the entire function is replaced with the return value
• print vs return

o print: for the user, just displays a value
o return: for the computer and allows you to send values in a function back to other parts

of your code
• Nothing in the function will be executed after a return statement is executed.
• Python’s default return is None.

2

Scope
• Variable assignments are tracked in a symbol table or stack frame that maps variable names to

their values
• When a function is called, a new stack frame is created.
• When the function returns, the stack frame pops off/is destroyed
• My python tutor does a good visualization of this https://pythontutor.com/.

3

https://pythontutor.com

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to CS and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

4

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

