

Electric VHDL mode:
Major mode for editing VHDL code.

Usage:

- TEMPLATE INSERTION (electrification) (`SPC'): After typing
 a VHDL keyword and entering `SPC', you are prompted for
 arguments while a template is generated for that VHDL construct. Typing
 `RET' (or `C-g' in yes-no queries) at the first
 prompt aborts the current template generation. Typing `M-SPC'
 after a keyword inserts a space without calling the template generator.
 Automatic calling of the template generators (i.e. electrification) can be
 disabled (enabled) by setting the variable `vhdl-electric-mode' to nil
 (non-nil) or by typing `C-c C-e' (toggles electrification
 mode).
 Template generators can be called using the VHDL menu, the key bindings, or
 by typing the keyword (first word of menu entry not in parenthesis) and
 `SPC'. The following abbreviations can also be used:
 arch, attr, conc, conf, comp, cons, func, inst, pack, ret, sig, sub, var.

- HEADER INSERTION (`C-c C-t h'): A customized header can be inserted
 including the actual file name, user name, and current date as well as
 prompted title strings. A custom header can be defined in a separate file
 (see custom variable `vhdl-header-file').

- STUTTERING (double strike): Double striking of some keys inserts cumbersome
 VHDL syntax elements. Stuttering can be disabled by variable
 `vhdl-stutter-mode' and be toggled by typing `C-c C-s'.
 '' --> " [--> (-- --> comment
 ;; --> " : " [[--> [--CR --> comment-out code
 ;;; --> " := "] -->) --- --> horizontal line
 .. --> " => "]] -->] ---- --> display comment
 ,, --> " <= " aa --> A - zz --> Z

- WORD COMPLETION (`TAB'): Typing `TAB' after a (not
 completed) word looks for a word in the buffer that starts alike and
 inserts it. Re-typing `TAB' toggles through alternative word
 completions. This also works in the minibuffer (i.e. in template generator
 prompts).

 Typing `TAB' after a non-word character indents the line if at the
 beginning of a line (i.e. no preceding non-blank characters), and inserts a
 tabulator stop otherwise. `M-TAB' always inserts a tabulator
 stop.

- COMMENTS (`--', `---', `----', `--CR'):
 `--' puts a single comment.
 `---' draws a horizontal line for separating code segments.
 `----' inserts a display comment, i.e. two horizontal lines with a
 comment in between.
 `--CR' comments out code on that line. Re-hitting CR comments out
 following lines.
 `C-c C-c' comments out a region if not
 commented out, uncomments out a region if already
 commented out.

 You are prompted for comments after object definitions (i.e. signals,
 variables, constants, ports) and after subprogram and process specifications
 if variable `vhdl-prompt-for-comments' is non-nil. Comments are
 automatically inserted as additional labels (e.g. after begin statements)
 and help comments if `vhdl-self-insert-comments' is non-nil.
 Inline comments (i.e. comments after a piece of code on the same line) are
 indented at least to `vhdl-comment-column'. Comments go at maximum to
 `vhdl-end-comment-column'. `RET' after a space in a comment will
 open a new comment line. Typing beyond `vhdl-end-comment-column' in a
 comment automatically opens a new comment line. `M-q'
 re-fills multi-line comments.

- INDENTATION: `TAB' indents a line if at the beginning of the line.
 The amount of indentation is specified by variable `vhdl-basic-offset'.
 `C-c TAB' always indents the current line (is bound to `TAB'
 if variable `vhdl-intelligent-tab' is nil). Indentation can be done for
 an entire region (`M-C-\') or buffer (menu). Argument and
 port lists are indented normally (nil) or relative to the opening
 parenthesis (non-nil) according to variable `vhdl-argument-list-indent'.
 If variable `vhdl-indent-tabs-mode' is nil, spaces are used instead of tabs.
 `M-x tabify' and `M-x untabify' allow to convert spaces to tabs and vice
 versa.

- ALIGNMENT: `C-c C-a' aligns port maps, signal and
 variable assignments, inline comments, some keywords, etc., on consecutive
 lines relative to each other within a defined region.
 `C-c M-C-a' only aligns inline comments (i.e. comments
 that are at the end of a line of code). Some templates are automatically
 aligned after generation if custom variable `vhdl-auto-align' is non-nil.

- KEY BINDINGS: Key bindings (`C-c ...') exist for most commands (see in menu).

- VHDL MENU: All commands can be called from the VHDL menu.

- INDEX MENU: For each VHDL source file, an index of the contained entities,
 architectures, packages, procedures, processes, etc., is created as a menu.
 Selecting a meny entry causes the cursor to jump to the corresponding
 position in the file. Controlled by variable `vhdl-index-menu'.

- SOURCE FILE MENU: A menu containing all VHDL source files in the directory
 of the current file is generated. Selecting a menu entry loads the file.
 Controlled by variable `vhdl-source-file-menu'.

- SOURCE FILE COMPILATION: The syntax of the current buffer can be analyzed
 by calling a VHDL compiler (menu, `C-c C-k'). The compiler to be
 used is defined by variable `vhdl-compiler'. Currently supported are
 `cadence', `ikos', `quickhdl', `synopsys', `vantage', `viewlogic', and
 `v-system'. Not all compilers are tested. Please contact me for
 incorporating additional VHDL compilers. An entire hierarchy of source
 files can be compiled by the `make' command (menu, `C-c M-C-k').
 This only works if an appropriate `Makefile' exists. Compiler options can
 be defined by variable `vhdl-compiler-options'.

- KEYWORD CASE: Lower and upper case for keywords, predefined types, predefined
 attributes, and predefined enumeration values is supported. If the variable
 `vhdl-upper-case-keywords' is set to non-nil, keywords can be typed in

 lower case and are converted into upper case automatically (not for types,
 attributes, and enumeration values). The case of keywords, types,
 attributes, and enumeration values can be fixed for an entire region (menu)
 or buffer (`C-c C-u') according to the variables
 `vhdl-upper-case-{keywords,types,attributes,enum-values}'.

- HIGHLIGHTING (fontification): Keywords, predefined types, predefined
 attributes, and predefined enumeration values (controlled by variable
 `vhdl-highlight-keywords'), as well as comments, strings, and template
 prompts are highlighted using different colors. Unit and subprogram names
 as well as labels are highlighted if variable `vhdl-highlight-names' is
 non-nil. The default colors from `font-lock.el' are used if variable
 `vhdl-customize-colors' is nil. Otherwise, an optimized set of colors
 is taken, which uses bright colors for signals and muted colors for
 everything else. Variable `vhdl-customize-faces' does the same on
 monochrome monitors.

 Signal highlighting allows distinction between clock, reset,
 status/control, data, and test signals according to some signal
 naming convention. Their syntax is defined by variables
 `vhdl-{clock,reset,control,data,test}-signal-syntax'. Signal coloring
 is controlled by the variable `vhdl-highlight-signals'. The default
 signal naming convention is as follows:

 Signal attributes:
 C clock S control and status
 R asynchronous reset D data and address
 I synchronous reset T test

 Syntax:
 signal name ::= "[A-Z][a-zA-Z0-9]*x[CRISDT][a-zA-Z0-9]*"
 signal identifier -^^^^^^^^^^^^^^^^^
 delimiter --------------------------^
 above signal attributes -------------^^^^^^^^
 additional attributes -----------------------^^^^^^^^^^^^

 (`x' is used as delimiter because `_' is reserved by the VITAL standard.)
 Examples: ClkxCfast, ResetxRB, ClearxI, SelectDataxS, DataxD, ScanEnablexT.

 If all VHDL words are written in lower case (i.e. variables
 `vhdl-upper-case-{keywords,types,attributes,enum-values}' are set to nil),
 make highlighting case sensitive by setting variable
 `vhdl-highlight-case-sensitive' to non-nil. This way, only names fulfilling
 the above signal syntax including case are highlighted.

- HIDE/SHOW: The code of entire VHDL processes or blocks can be hidden using
 the `Hide/Show' menu or by pressing `S-mouse-2' within the code
 (not in XEmacs).

- PRINTING: Postscript printing with different fonts (`ps-print-color-p' is
 nil, default faces from `font-lock.el' used if `vhdl-customize-faces' is
 nil) or colors (`ps-print-color-p' is non-nil) is possible using the
 standard Emacs postscript printing commands. Variable `vhdl-print-two-column'
 defines appropriate default settings for nice landscape two-column printing.
 The paper format can be set by variable `ps-paper-type'.

- CUSTOMIZATION: All variables can easily be customized using the `Customize'

 menu entry. For some variables, customization only takes effect after
 re-starting Emacs. Customization can also be done globally (i.e. site-wide,
 read INSTALL file). Variables of VHDL Mode must NOT be set using the
 `vhdl-mode-hook' in the .emacs file anymore (delete them if they still are).

Maintenance:

To submit a bug report, enter `C-c C-b' within VHDL Mode.
Add a description of the problem and include a reproducible test case.

Questions and enhancement requests can be sent to .

The `vhdl-mode-announce' mailing list informs about new VHDL Mode releases.
The `vhdl-mode-victims' mailing list informs about new VHDL Mode beta releases.
You are kindly invited to participate in beta testing. Subscribe to above
mailing lists by sending an email to .

The archive with the latest version is located at
.

Bugs and Limitations:

- Index menu does not work under XEmacs (limitation of XEmacs ?!).

- Re-indenting large regions or expressions can be slow.

- Hideshow does not work under XEmacs.

- Parsing compilation error messages for Ikos and Vantage VHDL compilers
 does not work under XEmacs.

Key bindings:

key binding
--- -------

z vhdl-stutter-mode-caps
y vhdl-stutter-mode-caps
x vhdl-stutter-mode-caps
w vhdl-stutter-mode-caps
v vhdl-stutter-mode-caps
u vhdl-stutter-mode-caps
t vhdl-stutter-mode-caps
s vhdl-stutter-mode-caps
r vhdl-stutter-mode-caps
q vhdl-stutter-mode-caps
p vhdl-stutter-mode-caps
o vhdl-stutter-mode-caps
n vhdl-stutter-mode-caps
m vhdl-stutter-mode-caps
l vhdl-stutter-mode-caps

k vhdl-stutter-mode-caps
j vhdl-stutter-mode-caps
i vhdl-stutter-mode-caps
h vhdl-stutter-mode-caps
g vhdl-stutter-mode-caps
f vhdl-stutter-mode-caps
e vhdl-stutter-mode-caps
d vhdl-stutter-mode-caps
c vhdl-stutter-mode-caps
b vhdl-stutter-mode-caps
a vhdl-stutter-mode-caps
, vhdl-stutter-mode-comma
. vhdl-stutter-mode-period
] vhdl-stutter-mode-close-bracket
[vhdl-stutter-mode-open-bracket
; vhdl-stutter-mode-semicolon
' vhdl-stutter-mode-quote
- vhdl-stutter-mode-dash
SPC vhdl-outer-space
TAB vhdl-tab
RET vhdl-return
DEL backward-delete-char-untabify
ESC Prefix Command
C-c Prefix Command

ESC TAB tab-to-tab-stop
ESC C-q vhdl-indent-sexp
ESC C-h vhdl-mark-defun
ESC C-e vhdl-end-of-defun
ESC C-a vhdl-beginning-of-defun
ESC C-u vhdl-backward-up-list
ESC C-b vhdl-backward-sexp
ESC C-f vhdl-forward-sexp
ESC e vhdl-end-of-statement
ESC a vhdl-beginning-of-statement

C-c C-k vhdl-compile
C-c C-b vhdl-submit-bug-report
C-c C-v vhdl-version
C-c C-h vhdl-help
C-c C-d vhdl-kill-line
C-c C-g goto-line
C-c C-o vhdl-open-line
C-c - vhdl-inline-comment
C-c C-c vhdl-comment-uncomment-region
C-c ESC Prefix Command
C-c C-a vhdl-align-noindent-region
C-c TAB vhdl-indent-line
C-c C-r vhdl-regress-line
C-c C-x vhdl-show-syntactic-information
C-c C-f font-lock-fontify-buffer
C-c C-u vhdl-fix-case-buffer
C-c C-s vhdl-stutter-mode
C-c C-e vhdl-electric-mode
C-c C-t Prefix Command

C-c ESC C-k vhdl-make

C-c ESC - vhdl-display-comment-line
C-c ESC C-a vhdl-align-comment-region

C-c C-t K Prefix Command
C-c C-t w vhdl-while-loop
C-c C-t W vhdl-wait
C-c C-t v vhdl-variable
C-c C-t u vhdl-use
C-c C-t t vhdl-type
C-c C-t S vhdl-subtype
C-c C-t s vhdl-signal
C-c C-t r vhdl-return-value
C-c C-t R vhdl-record
C-c C-t P vhdl-process
C-c C-t p vhdl-procedure
C-c C-t (vhdl-paired-parens
C-c C-t k vhdl-package
C-c C-t n vhdl-next
C-c C-t M vhdl-map
C-c C-t m vhdl-modify
C-c C-t l vhdl-loop
C-c C-t L vhdl-library
C-c C-t i vhdl-if
C-c C-t h vhdl-header
C-c C-t G vhdl-generic
C-c C-t g vhdl-generate
C-c C-t F vhdl-function
C-c C-t f vhdl-for
C-c C-t x vhdl-exit
C-c C-t e vhdl-entity
C-c C-t E vhdl-elsif
C-c C-t d vhdl-disconnect
C-c C-t C vhdl-constant
C-c C-t I vhdl-component-instance
C-c C-t c vhdl-case
C-c C-t b vhdl-block
C-c C-t A vhdl-array
C-c C-t a vhdl-architecture
C-c C-t ESC Prefix Command

C-c C-t K t vhdl-package-textio
C-c C-t K s vhdl-package-std-logic-1164
C-c C-t K n vhdl-package-numeric-std
C-c C-t K b vhdl-package-numeric-bit

C-c C-t ESC W vhdl-clocked-wait
C-c C-t ESC w vhdl-with
C-c C-t ESC S vhdl-selected-signal-assignment
C-c C-t ESC p vhdl-port
C-c C-t ESC e vhdl-else
C-c C-t ESC C Prefix Command
C-c C-t ESC s vhdl-concurrent-signal-assignment
C-c C-t ESC c vhdl-component
C-c C-t ESC a vhdl-assert
C-c C-t ESC A vhdl-alias

C-c C-t M-C s vhdl-configuration-spec

C-c C-t M-C d vhdl-configuration-decl
C-c C-t M-C c vhdl-component-configuration
C-c C-t M-C b vhdl-block-configuration

