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Lecture 03: Casework and Strong Induction 

1 Proof by Cases / Exhaustion 

Recall our proof techniques so far: 

• Existential by example/construction 

– Theorem: ∃x. P (x) 

– Method: construct x ∗ , prove P (x ∗) 

• Universal by instantiation 

– Theorem: ∀x. P (x) 

– Method: take arbitrary x, prove P (x) 

• Implication by direct argument 

– Theorem: P implies Q 

– Method: assume P , prove Q 

• Implication by contrapositive 

– Theorem: P implies Q, aka Q implies P 

– Method: assume Q, prove P 

• Contradiction: 

– Theorem: P , aka P implies False 

– Method: Assume P and prove false, i.e., prove Q and Q for some proposition Q 

• Universal over N by induction 

– Theorem: ∀n ∈ N. P (n) 

– Method: Prove P (0) and P (n) implies P (n + 1) for every n ≥ 0. 
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2 Proof by Cases 

For any proposition C, the statement C or not C is a tautology , i.e., always true. So P 
is equivalent to True implies P (check truth table for implication), which is equivalent to 
(C or not C) implies P , which can be split into (C implies P ) and (not C implies P ). 
So to prove P , it’s enough to show that C implies P AND not C implies P . 

Template: 

Theorem: P is true. 

Proof. Proof by cases on the truth value of C: 

• Case 1: Assume C is true. Then P is true because [todo]. 

• Case 2: Assume instead that C is false. Then P is true because [todo]. 

Since C must be either true or false, these two cases are exhaustive , so P is 
true in all possible cases and is therefore true. 

Example: 

Theorem 1. S := (A implies B) or (B implies C) is a tautology. In other words, for all 
values of A, B, C ∈ {True, False}, the statement S is true. 

Proof. Proof by cases: B must be either true or false. 

• Case 1: Assume B is true. Then A implies B is true, so S is true! 

• Case 2: Assume B is false. Then B implies C is true, so S is true! 

Since S is true in both cases, and these cases are exhaustive, S must be true. 

2.1 A bigger example: Mutual friends/strangers 

Say we have a group of 6 people, and every pair is either friends xor not friends (aka 
strangers). Friendship is always 2-way, so A is friends with B if and only if B is friends 
with A. 

Theorem 2. In a group of 6 people, there are always either 3 mutual friends, or 3 mutual 
strangers (or both). 

Proof. Proof by cases. Pick any person p. Each of the 5 other people are either friends with 
p or not. We’ll consider cases based on whether p has at least 3 friends. 

• Case 1: p has at least 3 friends. Let q, r, s be three of p’s friends. We’ll consider 
sub-cases depending on whether any pair from q, r, s are friends with each other: 
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– Case 1a: some pair from q, r, s are friends with each other. Then these 
two would, together with p, would be a group of 3 mutual friends! 

– Case 1b: None of q, r, s are friends with each other. Then these three 
form a group of 3 mutual strangers! 

• Case 2, p doesn’t have at least 3 friends. Then p has at most 2 friends and 
therefore at least 3 strangers. But this is fully symmetric with Case 1: by swapping 
the words “friends” with “strangers”, the same proof as in Case 1 would apply, and 
would prove the existence of 3 mutual strangers or 3 mutual friends, as needed. 

This example is part of a feld called Ramsey Theory: we defne R(f, s) := the minimum 
number of people needed to guarantee f mutual friends or s mutual strangers (or both). We 
just proved R(3, 3) ≤ 6. 

It is known that R(3, 3) = 6, R(4, 4) = 18, and 43 ≤ R(5, 5) ≤ 48, but the exact value is 
unknown! 

3 Proof by Cases, more general 

Take any tautology C1 or C2 or · · · or Ck. 

Template: 

Theorem: P is true. 

Proof. Proof by cases: 

• Case 1: Assume C1 is true. Then P is true because [todo]. 

• Case 2: Assume C2 is true. Then P is true because [todo]. 

• . . . 

• Case k: Assume Ck is true. Then P is true because [todo]. 

These k cases are exhaustive (i.e., C1 or · · · or Ck is a tautology) because 
[todo]. 

Famous proof by (lots of) cases: 

Proposition 3 (Four Color Theorem). The regions on any map can be colored with four 
colors such that no two adjacent regions have the same color. 

Long history. . . 



4 Lecture 03: Casework and Strong Induction 

• 1852: Conjectured by Guthrie in 1853 after noticing 4 colors is enough for countries of 
England 

• 1853: Kempe “proved” the theorem 

• 1864: Heawood found a bug :( 

• 1880: Tait “proved” the theorem 

• 1891: Petersen found a bug :( 

• 1976: Appel and Haken “proved” the theorem. This proof had 1834 cases, all checked 
by computer, and came out to 400 pages printed. Reportedly all checked by hand by 
Blostein (Haken’s daughter) 

• 1891: Schmidt found a bug :( 

• 1989: Appel and Haken fx bugs, publish full proof in a book (not peer reviewed like 
journal publications) :)? 

• 1996: Robertson, Sanders, Seymour, Thomas, simpler computer-checked proof :), with 
633 cases 

• 2005: Werner and Gonthier: Formalized proof in Coq, must more reliable tool for 
computer-verifed proofs :):) 

Amusing prank: Martin Gardner claimed this map required 5 colors, as an April Fools 
joke: https://mathworld.wolfram.com/McGregorMap.html. 

4 Strong induction 

And now for a new version of induction. Recall the induction axiom from last time. 

Axiom 1 (Induction axiom). Suppose P (n) is a predicate with n a natural-number variable. 
If P (0) is true, and for all n ∈ N, it holds that P (n) =⇒ P (n + 1), then the proposition 

∀n ∈ N, P (n) 

is true. 

(Some people might ask whether this is really an axiom—can’t we prove this obvious 
conclusion from more basic facts? It turns out that something like this is a basic axiom 
needed to defne the natural numbers themselves.) 

In a proof by induction, there are two parts: (1) the “base case”, which is the proof that 
P (0) holds, and (2) the “inductive step”, which is the proof that ∀n, P (n) =⇒ P (n + 1). 
Notice that in the inductive step, in order to prove P (n + 1) we may only assume the truth 
of P (n). The principle of strong induction says that this requirement can be relaxed: 

https://mathworld.wolfram.com/McGregorMap.html
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Theorem 4 (Strong induction). Suppose P (n) is a predicate with n a natural-number vari-
able. Suppose that 

1. P (0) is true. 

2. For all n ∈ N, it holds that 

P (0) ∧ P (1) ∧ . . . P (n) =⇒ P (n + 1). 

Then it holds that 
∀n ∈ N, P (n). 

In other words, in proving the inductive step, it is fne to assume the truth of P (m) for 
any and all m between 0 and n. 

At frst, it may seem that strong induction is stronger than regular induction. Indeed, if 
the “regular” version of the inductive step holds, the “strong” version holds as well: 

(P (n) =⇒ P (n + 1)) =⇒ (P (0) ∧ P (1) ∧ . . . P (n) =⇒ P (n + 1)). 

(Exercise: verify this by unpacking what the implications mean here!) 

So anything that can be proved with “regular” induction can be proven with strong 
induction. But are there propositions that can be proven with strong induction that cannot 
be proven with regular induction? The answer is NO! Strong induction is in fact completely 
equivalent to regular induction, and the strong induction theorem can easily be proven from 
the Axiom of Induction. You will see more about this on your warm-up exercises tomorrow! 

Example 1: stacking blocks Suppose we have a stack of n blocks. Let us play a game, 
where in each step, we may choose a stack of blocks and split it into two smaller stacks, not 
necessarily of equal size. Each time we do so, we gain a number of points that is equal to 
the product of the sizes of the two smaller stacks we create. The game ends when all stacks 
consist of just one block each. 

What is the highest score we can attain? 

To get a lower bound on this, let us try a very simple-minded strategy: in each step, we 
will always take the largest stack, and split of one block from it. So, supposing we started 
with 8 blocks, the strategy would proceed as follows: 

1. Split the stack of 8 into 7 + 1, gaining 7 · 1 = 7 points. 

2. Now split the stack of 7 into 6 + 1, gaining 6 points. 

3. Now split the stack of 6 into 5 + 1, gaining 5 points. 

4. . . . 
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5. Split the stack of 2 into 1 + 1, gaining 1 point. Now all remaining stacks have 1 block 
in them, so the game terminates. 

We can see that the total score we obtained was 7 + 6 + · · · + 2 + 1 = 28. 

Very surprisingly, if one tries other, “more intelligent” strategies for this same example of 
8 blocks, one will never obtain a value other than 28! Could it be that all strategies obtain 
a value of 28? 

The answer is yes, and we will prove it! In fact, we will prove the conclusion in general 
for all n. 

Theorem 5. Any strategy for the block game that starts with n blocks will obtain a total of 

Xn−1 
n(n − 1)

i = 
2 

i=1 

points. 

(Where did that magical summation formula come from? It can easily be proven with 
regular induction—do this on your own!) 

Proof. We will prove this using strong induction. I’m going to make a small twist and use 1 
as the base case, and prove the proposition for all n ≥ 1. (We could redefne our variable n 
to make the base case 0 if we wanted to, so this is purely cosmetic.) 

Proposition: For all n ≥ 1, P (n) is the proposition that any strategy for the game 
starting with n blocks will obtain n(n − 1)/2 points. 

Base case: For n = 1, it is clear that we get 0 points since the game immediately 
terminates. This matches the formula n(n − 1)/2. It also matches the sum as I have written 
it: the sum over an empty set of indices is 0. 

Strong inductive step: Suppose we start with n + 1 blocks. Our frst step is to split 
this pile somehow into m1 and m2 blocks. Note that m1 and m2 are both between 1 and 
n—empty piles are not allowed! So it’s OK that our base case is 1. 

Our frst claim is that we may now consider what happens to each pile independently. 
That is, after the frst split, the total number of points we gain is just the sum of the number 
of points we gain from all splits of the frst pile, and the number of points we gain from all 
splits of the second pile. Let us defne the notation F (n, S) to mean the number of points 
gained from splitting an initial pile of n blocks, following a strategy S. Then my claim in 
this notation is that 

F (n + 1, S) = m1 · m2 + F (m1, S1) + F (m2, S2), 

where S1, S2 are the strategies played on the two separate piles. 

Now, the inductive hypothesis tells us that for all m ≤ n, and for all strategies S ′ , it 
holds that F (m, S ′ ) = m(m − 1)/2. So we have 
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F (n + 1, S) = m1 · m2 + m1(m1 − 1)/2 + m2(m2 − 1)/2. 

We’re not quite done: we can still simplify this. Recall that m1 + m2 = n + 1. So we have 

1 
F (n + 1, S) = · (2m1m2 + m1(m1 − 1) + m2(m2 − 1)

2 

=
1 · (2m1m2 + m 21 − m1 + m 22 − m2)
2 

=
1 · ((m1 + m2)

2 − m1 − m2)
2 
1 

= · ((m1 + m2) · (m1 + m2) − (m1 + m2))
2 
(m1 + m2)(m1 + m2 − 1) 

= 
2 

(n + 1)(n + 1 − 1) 
= . 

2 

This is exactly what we wanted to show! So by strong induction, we are done! 

Example 2: “Beats ordering” Suppose we have a round robin tournament of n players, 
where every player plays against every other player exactly once. Let’s also suppose that 
each match is a win for one of the players: there are no ties. 

Q: Is there an ordering of the n players p1, p2, . . . , pn such that for all 1 ≤ 1 < n, it holds 
that pi beat pi+1 in their match? 

We call such an ordering a “beats ordering.” 

As an example, suppose we have 4 players, labeled A, B, C, D, with the following tourna-
ment results: 

• A beats C, D. 

• B beats A, C. 

• C beats D. 

• D beats B. 

Then a possible beats order is ACDB. Note that ABCD is not a beats order, since A did 
not beat B. 

Claim 6. A beats order always exists for all n. 

Proof. The proposition P (n) we wish to prove is: for all tournament results on n players, 
there exists a beats order for the n players. We will show it by strong induction. 

First, the base case, P (0): this is obviously true, because an empty list is a beats order 
for 0 players. 
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Now, for the strong inductive step. Here, we need to use a little bit of ingenuity. Suppose 
we have a tournament result for n + 1 players. Let us choose a player arbitrarily, and call 
them p ′ . We know that every other player either won or lost against p ′ , by the assumption 
that there are no ties. Intuitively, we should put the players that won against p ′ before it in 
the beats order, and the ones that lost after it. So let’s try that! 

More precisely, let W be the set of players that won against p ′ , and L the set of players 
that lost. We know that W ∪ L ∪{p ′ } is the set of all n + 1 players. Moreover, we know that 
W and L have size at most n. (Note: either set could be empty!) 

Now, it is time to apply the strong inductive assumption. We can assume that for all 
m ≤ n, it holds that a tournament result on m players can be arranged in a beats order. So 
let us take the set W , and generate an ordering p1, . . . , p|W | for these players (using only the 
tournament results between them). Likewise, we may generate an ordering q1, . . . , q|L| for L. 

Now, we claim that the ordering 

′ p1, . . . , p|W |, p , q1, . . . , q|L| 

is a beats ordering for the whole set of n + 1 players! To see why, let’s go back to the 
defnition: we need each player to beat the player immediately to its right. By assumption, 
this is already known for all players except for the ones next to p ′ : in particular, we have to 
check that p|W | beats p ′ , and that p ′ beats q1. But this is true, since p|W | ∈ W and q1 ∈ L! 
Thus, this is a valid beats ordering for the n + 1 players. 

Hence, by the principle of strong induction, the proposition is true for all n! 
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