
6.1200J/18.062J Mathematics for Computer Science Tuesday 26th September, 2023
Massachusetts Institute of Technology, Spring 2024
Z. Abel, B. Chapman, E. Demaine revised Wednesday 24th January, 2024

Lecture 06: Asymptotics

1 Goomy Stack

Last week we saw some techniques for evaluating and approximating sums. Today we will
use those techniques to solve a well-known physics problem.

1.1 Setup

The problem setup is illustrated above.

Rules:

1. We have a stack of n Goomy, numbered 0 through n− 1. We consider the table to be
Goomy n, for ease of notation.

2. For every i, Goomy i must be sitting on Goomy i + 1 (no two Goomy can be at the
same height).

Lecture 06: Asymptotics 2

3. Some Goomy must reach 1 foot (Goomy’s width) past the edge of the table.

Is this possible? Or is there some fundamental physical law that says the stack must fall
over if one Goomy is that far out?

1.2 Solution

We will see that in fact, it is possible. Define di to be the horizontal distance between the
right edge of Goomy i and the right edge of Goomy 0. If we can set all of the di so that the
stack is stable, and dn > 1, then this puts the top Goomy 1 foot past the edge of the table.

The di are subject to constraints given by gravity. Note that if the top Goomy is more
than half off the next Goomy, its center of mass is not above its support, so it will fall off the
stack. Similarly, if for any k, the top k Goomy together don’t have their collective center of
mass above the next Goomy, then they will all fall off. In other words, are constraints are
that for every k, the center of mass of the top k Goomy together must be above the next
Goomy.

Notice that the right edge of Goomy i is at location di, and its center is another 1/2 foot
beyond its right edge. Therefore, the center of mass of Goomy i is at location di + 1/2.

The top k Goomy are Goomy 0, Goomy 1, . . ., Goomy k − 1, so their center of mass
collectively is

1

k
(d0 + 1/2 + d1 + 1/2 + · · ·+ dk−1 + 1/2) =

1

2
+

1

k

k−1∑
i=0

di.

The next Goomy is Goomy k, which goes from location dk to dk + 1, so we have

dk ≤
1

2
+

1

k

k−1∑
i=0

di ≤ dk + 1.

In particular, if we set

dk =
1

2
+

1

k

k−1∑
i=0

di,

or equivalently

k · dk =
k

2
+

k−1∑
i=0

di,

(i.e. the COM of the top k Goomy collectively is exactly at the right edge of the next
Goomy), then this will satisfy both inequalities. This is the greedy approach; we construct
our stack from the top down, and we always put the top k Goomy as far to the right as they
can go without falling off the next Goomy.

Lecture 06: Asymptotics 3

We now have a recurrence for dk. Note that the recurrence is satisfied for every k, so we
can use the perturbation method to simplify our recurrence. If we write the recurrence for
both dk and dk−1 and subtract the two, we have

k · dk =
k

2
+

k−1∑
i=0

di

(k − 1) · dk−1 =
k − 1

2
+

k−2∑
i=0

di

k · dk − (k − 1) · dk−1 =
1

2
+ dk−1

We can rearrange a little bit to get

dk = dk−1 +
1

2k
.

We now have a much simpler recurrence for dk which only depends on dk−1 (as opposed
to all of d0, d1, . . . , dk−1), and if we expand out dn, we have

dn =
1

2

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
=

1

2

n∑
i=1

1

i
.

2 Harmonic Numbers

Definition 1 (Harmonic Numbers). The nth Harmonic Number is Hn =
n∑

i=1

1

i
.

Using this definition, we have dn =
1

2
Hn. If we compute the first few harmonic numbers,

we get H1 = 1, H2 =
3

2
, H3 =

11

6
, and H4 =

25

12
> 2. Since H4 > 2, this means that d4 > 1,

so with only four Goomy, we can get one of them to extend a foot past the edge of the table,
as we wanted.

We know that the harmonic numbers diverge to infinity, so in principle, by making the
Goomy stack tall enough, we could extend as far as we like past the edge of the table. For
instance, H227 ≈ 6.004, so with 227 Goomy, we could go 1 yard (3 feet) past the edge of the
table.

So we know that it is possible to go as far as we like, but a natural question is: How
many Goomy do we need? More formally, one could ask: Given x, what is the minimal n
such that Hn ≥ x? Can we compute this n in a closed form as a function of x?

Unfortunately, this would entail computing Hn, and despite many brilliant mathemati-
cians trying to find an answer for many years, nobody knows how to compute Hn in a closed

Lecture 06: Asymptotics 4

form. However, we can approximate Hn! Furthermore, with a good enough approximation
for Hn, we can also approximate the minimal n such that Hn ≥ x.

In lecture 05, we saw a way to approximate a sum using an integral. In this case, the
terms in our sum are decreasing, so we’ll use the integral bound for the sum of a decreasing
sequence.

f(n) +

∫ n

1

f(x) dx ≤
n∑

i=1

f(i) ≤ f(1) +

∫ n

1

f(x) dx

If we put in f(x) =
1

x
, then this turns into:

1

n
+

∫ n

1

dx

x
≤ Hn ≤ 1 +

∫ n

1

dx

x
1

n
+ [lnx]n1 ≤ Hn ≤ 1 + [ln x]n1

1

n
+ lnn− ln 1 ≤ Hn ≤ 1 + lnn− ln 1

1

n
+ lnn ≤ Hn ≤ 1 + lnn

We now have an upper bound and a lower bound that differ from each other (and hence
from the true value of Hn) by less than 1! In fact, if we just use lnn as an approximation
for Hn, then the error is at most 1. As n goes to infinity, lnn also goes to infinity, so the
error term of 1 becomes negligible in comparison. We ignore this error term and say that
Hn ∼ lnn.

Definition 2 (Tilde notation). f ∼ g (read “f tilde g” or “f is tilde of g”) if lim
x→∞

f(x)

g(x)
= 1.

Tilde notation gives a sense in which f and g are “approximately equal”; if we only care
about the approximate limiting behavior, we can safely ignore the precise difference between
f and g and treat them the same.

Using tilde notation, we have Hn ∼ lnn. With this approximation, we can see that if we
want a Goomy to go one chain (22 yards) past the edge of the table, we have Hn = 2dn ≈
2 · 22 · 3 = 132, so n ≈ e132, or about one octodecillion (1057). Mathematically, it’s possible,
but physically, we start having issues like having left Earth’s gravity well (at about a billion
Goomy), stars getting in the way (at about 1018 Goomy), the stack being unobservable due to
Heisenberg’s Uncertainty Principle (at about 1036 Goomy), and the stack simply containing
more mass than the entire universe (at about 1054 Goomy).

3 Approximating Products

In the previous section, we approximated the harmonic numbers; we will now see how to
approximate products.

Lecture 06: Asymptotics 5

Definition 3 (
∏

notation).
n∏

i=1

xi denotes the product x1 × x2 × · · · × xn.

Just as
∑

is used to denote a sum,
∏

is used to denote a product. Perhaps the best
known product is n!.

Definition 4 (n!). n! (read “n factorial”) is the product of the smallest n positive integers,

given by n! =
n∏

i=1

i.

Like Hn, n! is very important in computer science, particularly in counting and proba-
bility. It can be computed iteratively as per the definition, but we would like to compute
it much more efficiently. Just as we can compute an with repeated squaring using about
log2 multiplications rather than n, we would like to find a similarly efficient algorithm for
computing n!.

We already know techniques for computing sums, so we can reduce the task of computing
a product to computing a sum by using logs. We then have

ln(n!) = ln

(
n∏

i=1

i

)
= ln(1× 2× 3× · · · × n)

= ln 1 + ln 2 + ln 3 + · · ·+ lnn

=
n∑

i=1

ln i

Unfortunately, nobody knows how to compute this sum in a closed form, so rather than
compute it exactly, we can approximate it. Similarly to how we handled the harmonic
numbers, we use an integration bound. This time, however, we are summing an increasing
sequence, so we use the integration bound for increasing sequences.

f(1) +

∫ n

1

f(x) dx ≤
n∑

i=1

f(i) ≤ f(n) +

∫ n

1

f(x) dx

This time, f(x) = lnx, and we evaluate the integral using integration by parts. Taking

Lecture 06: Asymptotics 6

u = lnx and v = x, we have∫ n

1

f(x) dx =

∫ n

1

lnx dx

=

∫ n

1

u dv

= uv |n1 −
∫ n

1

v du

= [x lnx]n1 −
∫ n

1

dx

= [x lnx− x]n1
= n lnn− n− 1 ln 1 + 1

= n lnn− n+ 1

Putting this back into our integration bound and exponentiating, we have

ln 1 + n lnn− n+ 1 ≤ ln(n!) ≤ lnn+ n lnn− n+ 1

n lnn− n+ 1 ≤ ln(n!) ≤ (n+ 1) lnn− n+ 1

nn

en−1
≤ n! ≤ nn+1

en−1

This time, we approximated to within a factor of n, rather than to within an additive con-
stant. However, considering how large n! is (bigger than exponential), even a multiplicative
factor of n is actually quite good! And in fact, n! is so important that many people have
derived much more precise approximations.

3.1 Stirling’s Formula

One such approximation, known as Stirling’s formula, is the following:

n! =
(n
e

)n √
2πn eϵ(n),

where
1

12n+ 1
≤ ϵ(n) ≤ 1

12n

These are extremely precise; the multiplicative error is less than 1 +
1

144n2
(as opposed to

at most n, as we derived above). Since ϵ(n) → 0 as n → ∞, we can in fact drop the eϵ(n)

entirely and simply write

n! ∼
(n
e

)n √
2πn.

Now we have a very precise approximation for n!, and moreover, we can compute it
extremely efficiently using repeated squaring.

Lecture 06: Asymptotics 7

4 Asymptotic Notation

We just saw two examples of tilde notation being used to compare values we care about (Hn

and n!) with two values that are much easier to compute and work with. As n grows, we
don’t really care about the precise difference between the approximation and the true value,
and so we treat them as essentially “equal”. In computer science, we can often get away
with much less precise approximations. For instance, when talking about the runtime of an
algorithm, we don’t really even care about multiplicative constant factor errors. Machines
can differ, and so we want to normalize out such factors as how long a single instruction
takes to run on a particular machine. What we really care about is how the runtime of
our algorithm changes as the input size continues to grow. In order to talk about such
approximations, we use asymptotic notation. Asymptotic notation talks about upper and
lower bounds on functions, modulo constant factors and bounded, finite exceptions. While
somewhat complicated to define, it captures an intuitive concept of approximation that will
allow you to reason about the “big picture” behavior of functions without getting bogged
down with minor details.

In all of the following, assume that g : Z+ → R+, and f : Z+ → R, but note that all
definitions extend naturally to other domains.

Reminder: Our first example of asymptotic notation was ∼.

Definition 5 (Tilde). f ∼ g if lim
x→∞

f(x)

g(x)
= 1.

4.1 Big-O

Our next example, and the most commonly used in computer science is Big-O notation.

Definition 6 (Big-O). f ∈ O(g) (read “f is in Big-O of g”) iff

∃c ∈ R.∃M ∈ Z+.∀x ∈ Z+. [x > M ⇒ |f(x)| ≤ c · g(x)] .

O(g) is a set of functions that are asymptotically upper bounded by g. This definition is
somewhat complicated, so let’s unpack it. Essentially, it is expressing that (approximately)
|f | ≤ g. The c value means that we don’t really care about constant factors, so f just needs
to be within some constant factor of being bounded by g. The M value means that we also
don’t care about the behavior of f on some bounded, finite set close to 0. As long as x is
sufficiently large, f exhibits the behavior we care about (being within a constant factor of
g). We think of Big-O notation as capturing a notion of ≤, modulo constant factors and
bounded exceptions. Now this definition looks a little bit like the ϵ-δ definitions of limits
from calculus, but it is NOT a limit! That said, we do have the following:

Theorem 1. If lim
x→∞

|f(x)|
g(x)

∈ R, then f ∈ O(g).

Lecture 06: Asymptotics 8

Proof. Suppose lim
x→∞

|f(x)|
g(x)

= l ∈ R. Take c = l + 1. From the definition of a limit, ∃M s.t.

∀x > M ,

∣∣∣∣ |f(x)|g(x)
− l

∣∣∣∣ < 1, i.e. l − 1 <
|f(x)|
g(x)

< l + 1 = c. Hence f ∈ O(g).

Remember that this limit test can be useful for proving that f ∈ O(g). However, the
converse does not hold; if the limit does not exist, then you must go back to the definition
of O(g).

Examples

1. If f(x) = x and g(x) = x2, then f ∈ O(g).
Proof: Limit is 0.

2. If f(x) = 3 sinx, and g(x) = 1, then f ∈ O(g).
Proof: Take M = 0 and c = 3.

3. If f(x) = x2 and g(x) = x, then f ̸∈ O(g).
Proof: For any c and M , we can take x > max(c,M). Then x2 > c · x, so f ̸∈ O(g).

4. If f is quadratic, and g(x) = x2, then f ∈ O(g).
Proof: Limit is leading coefficient of f .

5. If f is a polynomial, and g(x) = 2x, then f ∈ O(g).
Proof: Limit is 0.

6. If f(x) = 4x, and g(x) = 2x, then f ̸∈ O(g).
Proof: For any c and M , we can take x > max(c,M). Then 4x > x · 2x > c · 2x, so
f ̸∈ O(g).

You may also see the following simpler, but equivalent, characterization of Big-O.

Theorem 2. f ∈ O(g) iff

∃c′ ∈ R. ∀x ∈ Z+. |f(x)| ≤ c′ · g(x).

Proof. For the reverse direction, take M = 0 and c′ = c. Then for all x > M , |f(x)| ≤
c · g(x) = c′ · g(x), so f ∈ O(g). For the forward direction, assume f ∈ O(g). Let S ={
|f(x)|
g(x)

: x ≤ M

}
∪ {c}, and take c′ = max(S). Now let x ∈ Z+. If x ≤ M , then |f(x)| =

|f(x)|
g(x)

·g(x) ≤ c′·g(x). Otherwise, |f(x)| ≤ c·g(x) ≤ c′·g(x). Either way, |f(x)| ≤ c′·g(x).

Note that in the above, we rely on S being a finite set. This theorem is valid when g’s
domain is Z+ (or N or some other discrete set), but NOT if we extend the definition of Big-O
to e.g. R+. When f and g have a discrete domain, you may use Theorem 2 as your definition
of Big-O, but it will not generalize to all domains.

Lecture 06: Asymptotics 9

4.2 Little-o

Definition 7 (Little-o). f ∈ o(g) (read “f is in little-o of g”) if lim
x→∞

f(x)

g(x)
= 0.

o(g) is the set of functions that are asymptotically much smaller than g. If we think
of Big-O as representing the non-strict inequality ≤, then little-o is its strict counterpart,
capturing a notion of <. Like tilde and unlike Big-O, little-o does use a limit as its definition.
Of course, you may also unpack the definition of a limit and use the following equivalent
characterization as a definition.

Theorem 3. f ∈ o(g) iff

∀ϵ ∈ R+.∃M ∈ Z+.∀x ∈ Z+. [x > M ⇒ |f(x)| < ϵ · g(x)] .

Proof. Definition of limit.

Examples

1. If f(x) = x and g(x) = x2, then f ∈ o(g).
Proof: Limit is 0.

2. If f(x) = 3 sinx, and g(x) = 1, then f ̸∈ o(g).
Proof: Limit doesn’t exist.

3. If f(x) = x2 and g(x) = x, then f ̸∈ o(g).
Proof: Limit is ∞.

4. If f is quadratic, and g(x) = x2, then f ̸∈ o(g).
Proof: Limit is leading coefficient of f (non-zero).

5. If f is a polynomial, and g(x) = 2x, then f ∈ o(g).
Proof: Limit is 0.

6. If f(x) = 4x, and g(x) = 2x, then f ̸∈ o(g).
Proof: Limit is ∞.

Just as x < y ⇒ x ≤ y, we also have the following:

Theorem 4. If f ∈ o(g), then f ∈ O(g).

Proof. Follows immediately from Theorem 1.

Lecture 06: Asymptotics 10

4.3 Big-Ω

Definition 8 (Big-Ω). f ∈ Ω(g) (read “f is in Big-Omega of g”) if g ∈ O(f). (Note that
this implies f is positive.)

Ω(g) is the set of functions that are asymptotically lower bounded by g. If we think
of Big-O as representing the non-strict inequality ≤, then Big-Ω represents the non-strict
inequality ≥. Just as with Big-O, we have the following limit test:

Theorem 5. If lim
x→∞

|f(x)|
g(x)

∈ (0,∞], then f ∈ Ω(g).

Proof. Follows from Theorem 1.

Examples

1. x2 ∈ Ω(x)

2. 2x ∈ Ω(x2)

3.
x

100
∈ Ω(100x+

√
x)

Theorem 6. If f ∈ o(g), then f ̸∈ Ω(g).

Proof. Suppose for sake of contradiction that f ∈ o(g) and g ∈ O(f), i.e.

∀ϵ ∈ R+.∃Mϵ ∈ Z+. ∀x ∈ Z+. [x > Mϵ ⇒ f(x) < ϵ · g(x)]

and
∃c ∈ R+.∀x ∈ Z+. g(x) ≤ c · f(x).

Taking ϵ =
1

c
and x = Mϵ + 1 gives g(x) ≤ c · f(x) < g(x), a contradiction.

4.4 Little-ω

Definition 9 (Little-ω). f ∈ ω(g) (read “f is in little-omega of g”) if g ∈ o(f). (Note that
this implies f is positive.)

ω(g) is the set of functions that are asymptotically much larger than g. As with our earlier
analogies, little-ω represents the strict inequality >. Just as with little-o, we have equivalent
characterizations, any of which may be used as a definition.

Theorem 7. The following are equivalent:

1. f ∈ ω(g)

Lecture 06: Asymptotics 11

2. lim
x→∞

f(x)

g(x)
= ∞

3. ∀c ∈ R+. ∃M ∈ Z+.∀x ∈ Z+. [x > M ⇒ f(x) > c · g(x)]

Proof. Equivalence of (2) and (3) is the definition of the limit. Equivalence of (1) and (3) is
Theorem 3, with the additional observation that both f and g are positive.

Examples

1. x2 ∈ ω(x)

2. 2x ∈ ω(x2)

3.
x

100
̸∈ ω(100x+

√
x)

4.5 Θ

Definition 10. f ∈ Θ(g) (read “f is in Theta of g”) if f ∈ O(g) and f ∈ Ω(g). (Note that
this implies f is positive.)

Θ(g) is the set of functions that are asymptotically equal to g. If the previous symbols
represent inequalities, then Θ represents =. As with Big-O and Big-Ω, there is a limit test
which we can use to prove that f ∈ Θ(g).

Theorem 8. If lim
x→∞

f(x)

g(x)
∈ R+, then f ∈ Θ(g).

Proof. Follows from Theorems 1 and 5.

Examples

1. 10x3 + 20x2 + 5 ∈ Θ(x3)

2. 2 + sinx ∈ Θ(1)

3.
x

lnx
̸∈ Θ(x)

4. 1 + sinx ̸∈ Θ(1)

Lecture 06: Asymptotics 12

4.6 CAUTION

There are many ways to read f ∈ O(g) (and all of the other analogous statements).

• “f is in (Big-) O of g”

• “f is (Big-) O of g”

• “f equals (Big-) O of g”

• “f is less than or equal to (Big-) O of g”

All of these are commonly used, and unfortunately, they invite some wrong ways to write
f ∈ O(g). Many people write f = O(g) or f ≤ O(g).

NEVER WRITE f = O(g). Not only is this an abuse of notation, it invites nonsense
deductions such as f = O(g) and h = O(g), so f = h. Often the fallacies are more
subtle, particularly when trying to use different kinds of asymptotic notation simultaneously
or manipulate them as sets. Big-O does NOT behave as equality. Writing f ≤ O(g) is
more acceptable. Although it is an abuse of notation, Big-O does behave somewhat like
an inequality. It is also harder to misinterpret f ≤ O(g) and write complete garbage. You
should still be careful though; Big-O does not obey all of the rules that govern inequalities
(Lecture 15).

A second abuse of notation (which I have already been using in these notes) is writing
f(n) ∈ O(g(n)), e.g. n ∈ O(n2). While not technically correct according to the definitions
given (pedantically it should be (n 7→ n) ∈ O(n 7→ n2)), this latter is terrible to read.
n ∈ O(n2) is clear and unambiguous, so please use this notation in preference to 7→.

A third abuse of notation which you will likely encounter is statements of the form f ∈
g(O(h)). This does NOT mean f ∈ O(g ◦ h); g(O(h)) is shorthand for the set {g ◦ h′ | h′ ∈
O(h)}. Sometimes these two will coincide, but often they will not.

Another common mistake is writing statements such as f ≥ O(g). This means absolutely
nothing, because the constant 0 function is in O(g) (so this is just saying that the absolute
value of f is non-negative). Remember that O and o are ONLY upper bounds, and Ω and
ω are ONLY lower bounds.

Finally, the definitions of Ω and ω presented above are the ones used in computer science,
but there are conflicting definitions used in analytic number theory. If you take a course
in analytic number theory, you may encounter the definition f ∈ Ω(g) iff f ̸∈ o(g), or the
corresponding definition f ∈ ω(g) iff f ̸∈ O(g). For most of the functions that you will
encounter in CS, these definitions will coincide, but they are not generally equivalent (the
CS definitions are stronger).

Lecture 06: Asymptotics 13

4.7 Summary

Definition Limit Test

f ∼ g (→→→) lim
x→∞

f(x)

g(x)
= 1 “=”

f ∈ O(g) ∃c.∃M.∀x > M. |f(x)| ≤ c · g(x) lim
x→∞

|f(x)|
g(x)

∈ R “≤”

f ∈ o(g) (→→→) lim
x→∞

f(x)

g(x)
= 0 “<”

f ∈ Ω(g) g ∈ O(f) lim
x→∞

f(x)

g(x)
∈ (0,∞] “≥”

f ∈ ω(g) g ∈ o(f) lim
x→∞

f(x)

g(x)
= ∞ “>”

f ∈ Θ(g) f ∈ O(g) and f ∈ Ω(g) lim
x→∞

f(x)

g(x)
∈ (0,∞) “=”

Black limit tests are valid definitions; red limit tests are only one-sided tests!

MIT OpenCourseWare
https://ocw.mit.edu

6.1200J Mathematics for Computer Science
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Goomy Stack
	Setup
	Solution

	Harmonic Numbers
	Approximating Products
	Stirling's Formula

	Asymptotic Notation
	Big-O
	Little-o
	Big-
	Little-
	
	CAUTION
	Summary

	cover.pdf
	Blank Page

