
6.1200J/18.062J Mathematics for Computer Science Thursday 28th September, 2023
Massachusetts Institute of Technology, Spring 2024
Z. Abel, B. Chapman, E. Demaine revised Wednesday 24th January, 2024

Lecture 07: Recurrences

A recurrence describes a sequence of numbers. Early terms are described explicitly, while
later terms are expressed as a function of their predecessors. A very simple example is
a0 = 1, and an = an−1 + 1. This has closed form an = n + 1. Another familiar example is
the Fibonacci Numbers: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. It takes some
work, but we can even find a closed form for these:

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)

Today we will see how to model computational problems, such as computing running time,
by using recurrences, and we will see how to find closed-form solutions for many recurrences.

1 Towers of Hanoi

This is a puzzle originally proposed by the French mathematician Edouard Lucas in 1883,
and it has an accompanying legend. According to legend, there is a tower in Hanoi which
houses three tall posts, and there were 64 golden discs of different sizes stacked up on one of
the posts, with the largest on the bottom, and decreasing in size up to the top. This tower
was home to an order of monks who were tasked with moving these discs according to two
rules:

1. Only one disc could be moved at a time.

2. A larger disc can never be on top of a smaller disc.

If/when the monks could move all of the discs to a different post, the tower would crumble
and the world would end. We would like to compute how long the world will last.

1.1 Abstraction

In general, there are n disks, with sizes 1 (smallest) through n (largest). There are 3 posts,
“left”, “middle”, and “right” (L, M, R). Must move a disk from the top of one stack to the
top of another stack, but we can’t put a larger disk on a smaller disk.

Let’s come up with an algorithm to move all disks from L to R.



2 Lecture 07: Recurrences

1.2 State Machine

Can model this as a state machine: each state is an n-element list (x1, . . . , xn) ∈ {L,M,R}n;
in other words, xi says whether the i’th disk is on the L, M, or R post. For example, the
start state is (L,L, . . . , L), and the target state is (R,R, . . . , R).

Transitions are given by (x1, x2, . . . , xi, . . . , xn) → (x1, x2, . . . , x
′
i, . . . , xn) if for every j < i,

xj /∈∈ xi, x
′
i. In other words, all disks 1, . . . , i − 1 must be out of the way on the third,

untouched disk.

1.3 Playing with Boxes

Let’s start small and work up to larger and larger solutions.

When n = 1, how to solve? (1)()() → ()()(1).

When n = 2? (12)()() → (2)(1)() → ()(1)(2) → ()()(12).

When n = 3? Plan ahead a bit. Need to “uncover” 3 before we can move it. Will look
something like this: (123)()()

?⇒ (3)(12)() → ()(12)(3)
?⇒ ()()(123). So how can we move

12 from L to M? Wait, already solved this! The steps for n = 2 work just fine, because the
stationary 3 disk doesn’t affect the movements of 1 and 2. So we can use our n = 2 solution
(swapping the roles of M and R) to move 12 from L to M, then move 3 from L to R, then
use our n = 2 solution again.

Keep this firmly in your mind: We have a 7-move sequence to move 123 from one post to
another. (Doesn’t have to be L to R, can adjust for any two posts!) Don’t have to remember
exactly how that sequence works right now (can piece it back together later); for now, just
trust that we can move 123 from any post to any other post with 7 moves.

When n = 4? Like before, it’ll look something like this: (1234)()() ⇒ (4)(123)() →
()(123)(4) ⇒ ()()(1234). Can use our 7-step sequence for n = 3 twice. This gives us a
7 + 1 + 7 = 15 step sequence to move 4 disks from L to R. It’s often easier to temporarily
try not to remember exactly how those 7-step sequences work; that way, we can understand
our n = 4 solution at a high level with just 3 steps: move 123 from L to M, then 4 from L
to R, then 123 from M to R.

What about n = 5? You guessed it! “Use the n = 4 recipe [whatever that is!] to get to
(5)(1234)(), then move to ()(1234)(5), then use the n = 4 recipe again to get to ()()(12345).”

We’re just defining an algorith by induction! In general, to solve n disks, we can use the
same idea, assuming we’ve already solved the n− 1 case:

(1, 2, · · · , n)()() n−1⇒ (n)(1, 2, . . . , n− 1)() n− 1 solution from L to M

→ ()(1, 2, . . . , n− 1)(n) single move
n−1⇒ ()()(1, 2, · · · , n) n− 1 solution from M to R

In “code”, it might look like this:



Lecture 07: Recurrences 3

• H(n,A,B): (move disks 1 through n from post A to post B)

– If n = 1, move disk 1 from A → B, done! Otherwise:

– H(n− 1, A, C) (move the top n− 1 disks onto the third post C)

– move disk n from A → B

– H(n− 1, C,B) (move the rest of the disks onto B)

1.4 Guess and Check

Let T (n) be the number of steps performed by our recursive algorithm above. Then T (1) = 1
and T (n) = 2T (n− 1) + 1 for n ≥ 2. In particular,

T (1) = 1 T (2) = 3 T (3) = 7 T (4) = 15 T (5) = 31 · · · .

This is a great example of a recurrence: a sequence where terms are defined inductively, i.e.,
as a function of the previous terms.

A recurrence is an implicit representation, needing to iterate one at a time to discover
more of the sequence. Just like with summations, we often want to know a closed form
formula for the nth term without having to compute all the intermediate terms.

In this example, you might guess that T (n) = 2n − 1, and you would be correct! How to
prove? (Say it with me! Induction!) Just like with sums, if you know (or can guess) a closed
form for the nth term of a recurrence, proving it by induction is straightforward.

Not hard to prove that our T (n) is in fact the optimal algorithm for n disks (see book).
This means T (64) = 264 − 1, so at one move per second, the world will end in (264 − 1) sec,
or around half a trillion years.

2 Selection Sort

Here’s a simple sorting algorithm, called Selection Sort, arguably even simpler than Simple
Sort. Read all n numbers to find the largest one (n − 1 comparisons), remove it from the
list and put it at the end of the answer, then repeat with the remaining n− 1 numbers.

Easy recurrence for the number of comparisons: T (1) = 0 (already sorted), and T (n) =
n− 1 + T (n− 1). Solution: (n− 1) + (n− 2) + · · ·+ 1 = (n− 1)(n)/2, our favorite! Are we
doomed to quadratic runtimes for sorting algorithms!

3 Merge Sort

Idea: given two sorted lists, it’s easy to find the smallest item, with just 1 comparison! Can
merge entire list with at most n− 1 comparisons.



4 Lecture 07: Recurrences

Do example: scrambled: 2,20,15,7,9,3,10,14 scrambled: ptown, ptonne, butternut, bubs,
totoro, wire, ralph, coop

sorted: 2, 3, 7, 9, 10, 14, 15, 20 sorted: ptown, wire, bubs, totoro, ralph, coop, butternut,
ptonne

Mergesort uses this merge routine together with recursion:

Mergesort (on n = 2k elements):

• Input: a list X = (x1, . . . , xn).
1

• If n = 1, Done! Return X.

• Split list into two halves: L = (x1, . . . , xn/2) and R = (xn/2+1, . . . , xn)

• Use Mergesort recursively to sort L and R, resulting in lists L′ and R′.

• Merge L′ with R′, and return the result.

A note about recursion: often seen as an evil scary impenetrable bogeyman topic, the
bane of all CS students, woe unto us all, the end is nigh, and so on and so fifth.

What does it mean that we “sort L and R recursively” with an algorithm we haven’t
finished describing? How do we know the recursive calls worked correctly, if we haven’t
finished explaining why Mergesort works correctly?

Key takeaway: it’s just induction. Mergesort works. Proof: MS(1) works. MS(2) works.
MS(4) works because MS(2) works, and merge step is correct. MS(8) because MS(4) and
merge step are both correct. In general, MS(2n) works because we’re allowed to assume
MS(2n−1) works, because we’re inducting.

How many comparisons do we do? Let’s let T (n) be (an upper bound on) the number of
comparisons needed. Then we can write

T (n) = 2T (n/2) + n− 1.

How does this compare to selection sort?

n 1 2 4 8 16 32
Mergesort 0 1 5 17 49 129

Selection Sort 0 1 6 28 120 496

1Sometimes indices run 1-to-n, sometimes 0-to-n− 1, it’s anyone’s guess!



Lecture 07: Recurrences 5

3.1 Closed Form for T (n): Plug and Chug

Guess and Check is only useful when we know the closed form already, or we have a reliable
way to guess it. What if we don’t? Here’s a different method that can sometimes help us
discover a pattern that we don’t already know.

Plug and Chug: Substitute recurrence into itself, hope to find a pattern in the expanded
recurrence. Let’s try that!

T (n) = (n− 1) + 2T (n/2)

= (n− 1) + 2(n/2− 1 + 2T (n/4))

= (n− 1) + (n− 2) + 4T (n/4)

= (n− 1) + (n− 2) + (n− 4) + 8T (n/8)

=
...

= (n− 1) + (n− 2) + (n− 4) + · · ·+ (n− 2k−1) + 2kT (n/2k).

Recall we’re assuming n is power of 2, so choose k = log2 n, so 2k = n. Then T (n) =
kn− (1 + 2 + 4 + · · ·+ 2k−1) + nT (1) = kn− (n− 1) = n log2 n− n+ 1. Should verify with
guess&check, but we’ll skip that now.

4 Master Theorem

What about mergesort when n isn’t a power of 2? Conservatively, can bound it with T (n) =
2T (⌈n/2⌉) + n− 1. Is it still T (n) ≈ n log2 n− n+ 1? How can we tell? How precise is this
approximation? Could probably still muddle through with an induction. . .

There are many divide and conquer algorithms like mergesort, with very similar recur-
rences. E.g.,

• Binary Search, from hw: T (n) = T (⌈n/2⌉) + 1.

• Karatsuba integer multiplication: T (n) = 3T (⌈n/2⌉) + Θ(n) (details omitted)

Let’s learn how to solve lots of recurrences like this, in 3 easily-identified cases:

Theorem 1 (Master Theorem). Let a ≥ 1 and b > 1 be constants, let f(n) be a function,
and let T (n) be defined on the nonnegative integers by the recurrence

T (n) = a · T
(⌊n

b

⌋)
+ f(n).

Then T (n) has the following asymptotic bounds:

1. If f(n) = O(n(logb a)−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a).



6 Lecture 07: Recurrences

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(n(logb a)+ϵ) for some constant ϵ > 0, and if af(⌊n/b⌋) ≤ cf(n) for some
constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

This theorem is also true if we replace ⌊n/b⌋ with ⌈n/b⌉ everywhere.

Proof Sketch. Consider the recursive call tree: There’s 1 node at n, a nodes at n/b, a2 nodes
at n/b2, and in general, ak nodes n/bk. How big is this tree? It goes to depth k = logb n,
and the total number of nodes is Θ(ak) = Θ(nlogb a). How much work is done at every level?
f(n), af(n/b), a2f(n/b2), . . . , akf(n/bk).

If f grows really slowly as in case 1 (in the extreme case, imagine a constant f(n) =
1), then the number of nodes in the tree is all that matters, and the algorithm runs in
Θ(number of nodes) = Θ(nlogb a). If f grows very quickly (case 3), then the top node dom-
inates the recursion work, and the runtime is just Θ(top node) = Θ(f(n)). If these two
forces are well balanced (in the sense that f(n) ∈ Θ(nlogb a); this is case 2), then it turns
out that each level contributes roughly the same amount of work, so the runtime looks like
Θ(f(n) · depth) = Θ(nlogb a · logb n) = Θ(nlogb a log n).

This can be made rigorous, and it can be shown that floors or ceilings don’t affect the
analysis.

Example: Mergesort: T (n) = 2T (⌈n/2⌉) + n − 1 has a = b = 2 and f(n) = n − 1. This
is case 2, because nlog2 2 = n1. So T (n) ∈ Θ(n1 log n), as we hoped.

Example: Binary Search (saw in homework): T (n) = T (⌈n/2⌉) + 1. This has a = 1,
b = 2, f(n) = 1, nlogb a = n0 = 1, so this is also case 2: T (n) ∈ Θ(n0 log n) = Θ(log n).

Example: Karatsuba, T (n) = 3T (⌈n/2⌉) + Θ(n). This has a = 3, b = 2, nlogb a = nlog2 3.
This is case 1 because f(n) ∈ O(nlog2 3−ϵ) because log2 3 > 1. So T (n) ∈ Θ(nlog2 3).

Example: Hanoi: T (n) = 2T (n − 1) + 1. Can’t apply Master Theorem, because doesn’t
have correct form. Doesn’t follow the “divide and conquer” paradigm. And to see a differ-
ence, consider the recursion tree: 1 node at n, 2 and n−1, 4 at n−2, etc. Since we subtract
1 instead of dividing by b, there are linearly many levels and exponentially many nodes in
the tree, which is why the solution is exponential. By contrast, divide-and-conquer-style
recurrences have log-depth and polynomial-size trees, so those solutions are typically much
smaller.

Example: Master Theorem does have gaps! For example, T (n) = 2T (n/2)+n log n cannot
be solved by master theorem. It is not case 2 because f(n) = n log n is strictly larger than
nlogb a = n asymptotically. But it is also not case 3, because it is only larger by a log factor,
not by a polynomial factor nϵ. So we would need to resort to more careful recursion tree
analysis, or some form of induction instead.



MIT OpenCourseWare
https://ocw.mit.edu

6.1200J Mathematics for Computer Science
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Towers of Hanoi
	Abstraction
	State Machine
	Playing with Boxes
	Guess and Check

	Selection Sort
	Merge Sort
	Closed Form for T(n): Plug and Chug

	Master Theorem
	cover.pdf
	Blank Page




