Lecture 09: Modular Arithmetic

1 Quick Followup from Last Week

Proposition 1. For all integers a and b, the common divisors of a and b are precisely the common divisors of a and b - a.

Proof. Suppose d is a common divisor of a and b. Let x, y be integers such that dx = a and dy = b. Then d(y - x) = b - a, so d is also a common divisor of a and b - a.

Conversely, suppose d is a common divisor of a and b - a. Let x, y be integers such that dx = a and dz = b - a. Then d(x + z) = b, so d is also a common divisor of a and b. \Box

Theorem 2 (Bezout's Identity + The Pulverizer). For any integers a, b, there exist integers s, t such that gcd(a, b) = as + bt. We can compute s, t from a, b using the Pulverizer.

Corollary 3. A number can be written as an i.l.c. of a, b IFF it is a multiple of gcd(a, b).

Proof. Let g = gcd(a, b). Every ilc of a, b is divisible by g. Conversely, we know g = sa + tb for some s, t by Bezout, so every multiple of g (say kg) can be written as (ks)a + (kt)b and is therefore an ilc of a, b.

2 Towards Modular Arithmetic

- What is even+odd? (odd)
- What is the last digit of 357×994 ? (8, b/c $7 \times 4 = 28$)
- It is curently 3pm. What time will it be in 49 hours? (4pm, b/c 49h is 1h more than 2 full days)
- Today is Tuesday. What day of the week will it be in 10 days? (Friday, b/c 10 days is 3 more than a week.)
- What day of the week will it be 100 days from now? What computation do you need to do? (rem(100, 2) = 2, so Tues+2=Thurs)

These are all familiar examples of Modular Arithmetic. When working modulo n, the theme is "ignore multiples of n, just focus on remainders".

Even/Odd: remainder when dividing by 2. Weekday: remainder when dividing by 7. Last digit: remainder when dividing by 10. Hour: remainder when dividing by 12 or 24 (if we care about am/pm).

Often called clock arithmetic, because we're familiar with ignoring multiples of 12 or 24 when telling time.

Definition 1. We say $a \equiv_n b$ (pronounced "a is congruent to b mod n") IFF $n \mid a - b$.

Note: more standard notation for $a \equiv_n b$ is $a \equiv b \mod n$ or $a \equiv b \pmod{n}$. However, this notation can invite confusion (explained later), so we suggest sticking to the $a \equiv_n b$ notation until you are familiar with modular arithmetic.

We'd like to consider a and b "the same" when their difference is a multiple of n.

For example, there are only 5 different "values" when looking mod 5:

 $[0] = \{\dots, -10, -5, 0, 5, 10, \dots\}$ $[1] = \{\dots, -9, -4, 1, 6, 11, \dots\}$ $[2] = \{\dots, -8, -3, 2, 7, 12, \dots\}$ $[3] = \{\dots, -7, -2, 3, 8, 13, \dots\}$ $[4] = \{\dots, -6, -1, 4, 9, 14, \dots\}$

For a general number k, which group will it belong to? Just look at k rem 5. If we write k = 5q + r, then $k \equiv_5 r$, because k - r = 5q.

Recall the Division Theorem:

Theorem 4. For all pairs of integers n, d with d > 0, there exists a unique pair of integers q, r where n = qd+r and $0 \le r < d$. The number $q = n \operatorname{div} d$ is the quotient, and $r = n \operatorname{rem} d$ is the remainder.

When working mod n, a number k is always congruent to its remainder (sometimes called its residue): if k = nq+r, then $n \mid nq = k-r$, so $k \equiv_n r$. Claim: the n remainders $0, 1, \ldots, n-1$ represent all the possible "groupings" (called *residue classes* or *equivalence classes*) mod n.

Theorem 5. $a \equiv_n b$ if and only if $(a \operatorname{rem} n) = (b \operatorname{rem} n)$.

Proof. If $(a \operatorname{rem} n) = (b \operatorname{rem} n) = r$ then a = nq + r and b = nq' + r for some q, q'. So a - b = n(q - q') which is a multiple of n, so $a \equiv_n b$.

Conversely, suppose $a \equiv_n b$, so a - b = nk for some k. Write b = qn + r where $0 \leq r \leq n - 1$, so $r = (b \operatorname{rem} n)$. Then a = b + nk = (k + q)n + r. Since $0 \leq r \leq n - 1$, k + q and r are the unique values guaranteed by the Division Theorem, i.e., r also equals $a \operatorname{rem} n$.

So the *n* different remainders when dividing by *n* divide \mathbb{N} into *n* different groups, identified by their remainders. Can think of $0, 1, \ldots, n-1$ as the only possible values mod *n*, and all other numbers are congruent to one of these.

3 Interlude: Confusing Notation

3.1 Remainder

Remainder can be notated as $a \operatorname{rem} n$ aka $\operatorname{rem}(a, n)$ aka $a \mod n$. Recall that n is always positive, but a can be pos or neg.

Many languages have the modulo operator a%n which generally behaves like our rem, but not always!! By our def, $a \operatorname{rem} n$ is always nonnegative, even when a is negative: (-43%10) = 7. Python and Mathematica agree with us. But many *other* languages think negative a values should have negative remainders: (-43%10) = -3. Javascript and C/C++, for example. And some have both, with two different names, e.g., CoffeeScript (% vs %%), Lisp (mod vs rem), Fortran (mod vs modulo), Haskell (mod vs rem).

For this class, any version of remainder we use will always mean the *nonnegative* one.

Similarly, a//n is commonly used programming notation for integer division, but languages disagree on which way to round. We always round *down*.

3.2 Two meanings for mod

Confusing notation: $a \mod n$ is commonly used for rem(a, n). Confusing! What does $a = b \mod n$ mean? Does it mean $a \equiv b \mod n$? Or does it mean $a = (b \mod n)$, i.e., $a = b \operatorname{rem} n$?

Difference: $a \mod n$ is a function, with a single definite value, namely $a \operatorname{rem} n$. Always between 0 and n-1.

But $a \equiv b \mod n$ is a relationship between two quantities. Neither needs to be between 0 and n-1. E.g., $12 \equiv 17 \mod 5$ is a true statement. Their remainders are $(12 \mod 10) = 2$ and $(17 \mod 5) = 2$.

4 Putting the Arithmetic in Modular Arithmetic

The simple statement even+odd=odd says something profound: "no matter which even number and odd number we add, the result is always odd". This generalizes: "if we pick any number $a \equiv_5 3$ and any number $b \equiv_5 4$, adding them will always produce a number $a + b \equiv_5 7$. (Could also write this as $a + b \equiv_5 2$.)

Theorem 6. If $a \equiv_n b$, then for any c,

- 1. $a + c \equiv_n b + c$,
- 2. $ac \equiv_n bc$,
- 3. $a-c \equiv b-c$, and

$$4. \ c-a \equiv c-b.$$

Proof. By definition of \equiv_n , $n \mid a - b$.

When adding or multiplying or subtracting, can replace a by anything it is congruent to mod n, without changing the result mod n.

True for the **base** of exponents as well:

Theorem 7. If $x \equiv_n y$, then for any $k \ge 1$, $x^k \equiv_n y^k$.

Proof. This is just repeated multiplication, so we proceed by induction on k.

- IH: $P(k) := x^k \equiv_n y^k$
- Base case (k = 1): this is the theorem assumption.
- IS: Assume that $x^{k-1} \equiv_n y^{k-1}$. Then

$$\begin{aligned} x^{k} &\equiv_{n} x^{k-1} \cdot x \\ &\equiv_{n} y^{k-1} \cdot x \\ &\equiv_{n} x \cdot y^{k-1} \\ &\equiv_{n} x \cdot y^{k-1} \end{aligned} \qquad (\text{previous theorem, taking } a = x^{k-1}, \ b = y^{k-1}, \ \text{and } c = x) \\ &\equiv_{n} x \cdot y^{k-1} \\ &\equiv_{n} y \cdot y^{k-1} \end{aligned} \qquad (\text{previous theorem, taking } a = x, \ b = y, \ \text{and } c = y^{k-1}) \\ &\equiv_{n} y^{k} \end{aligned}$$

• By induction, for all $k \ge 1$, $x^k \equiv_n y^k$.

Warning: The same is *not* true for the exponent k. E.g., $1 \equiv_5 6$, but $2^1 \not\equiv_5 2^6$ (they have remainders 2 and 4, respectively).

Let's see an example: What are the last two digits of

$$x := 11335^{11111}(6 + 7799^{5000})?$$

That's the same as asking for x rem 100.

General strategy: replace intermediate calculations with their remainders, as early and often as we can. This helps us work with smaller numbers.

First of all,

$$x \equiv_{100} 35^{11111} (6 + 99^{5000}).$$

(Not allowed to just reduce the exponents mod 100.) For the right exponent, $99 \equiv_{100} -1$, so $99^{5000} \equiv_{100} (-1)^{5000} \equiv_{100} 1$. For the left term, look for a pattern:

$$35^{1} \equiv_{100} 35$$

$$35^{2} \equiv_{100} 25$$

$$35^{3} \equiv_{100} 25 \cdot 35 \equiv_{100} 75$$

$$35^{4} \equiv_{100} 75 \cdot 35 \equiv_{100} 25.$$

Will continue bouncing between 25 and 75. So $35^{11111} \equiv_{100} 75$. We find $x \equiv_{100} 75 \cdot (6+1) \equiv_{100} 25$, so this must be the remainder.

5 Division

Addition, Subtraction, Multiplication, and *bases* of exponents can be substituted mod n (but not the exponents).

Can we divide mod n? Suppose $3x \equiv_6 3$. Can we "divide both sides by 3" and conclude that $x \equiv_6 1$? No. (Consider e.g.: $3 \times 5 \equiv_6 3$.)

A multiplicative inverse of x, denoted x^{-1} , is a number you can multiply x by to get 1. In \mathbb{R} , the multiplicative inverse of 3 is $3^{-1} = 1/3$, because $3 \cdot 1/3 = 1$. If "1/3" made sense mod 6, then we could multiply both sides by 1/3 to conclude that $5 \equiv_6 1$. So 3 doesn't have a multiplicative inverse mod 6.

When do mod n inverses exist for a number a?

Theorem 8. a has an inverse mod n IFF gcd(a, n) = 1.

Proof. a has an inverse mod n IFF exists b such that $ab \equiv_n 1$ IFF exists b and q such that ab - 1 = nq (i.e. ab - nq = 1) IFF 1 is a linear combination of a and n IFF gcd(a, n) = 1. \Box

Corollary 9. If p is prime and $a \not\equiv_p 0$, then a has an inverse mod p.

Proof. gcd(a, p) must be p (if $p \mid a$) or 1 (only other factor of p). Now apply previous result.

Having a multiplicative inverse means we "can cancel from both sides" or "divide" by that amount. E.g., 7 and 13 are inverses of each other mod 30. If we know $7x \equiv_{30} 14$ can we conclude that $x \equiv 2 \mod 30$? Instead of dividing, let's multiply both sides by 13:

$$7x \equiv_{30} 14$$

$$13 \cdot 7x \equiv_{30} 13 \cdot 14$$

$$91x \equiv_{30} 182$$

$$x \equiv_{30} 2$$

So yes, since 7 has a multiplicative inverse, we can "cancel it from both sides".

What about $7x \equiv_{30} 12$? This time, we cannot "cancel" in the usual way, but we can still multiply by 13:

$$7x \equiv_{30} 12$$

$$13 \cdot 7x \equiv_{30} 13 \cdot 12$$

$$91x \equiv_{30} 156$$

$$x \equiv_{30} 6$$

Important fact:

Theorem 10 (Fermat's Little Theorem). If p is prime and $a \not\equiv_p 0$, then $a^{p-1} \equiv_p 1$.

(Not to be confused with Fermat's **Last** Theorem. Very different, much harder.)

Proof. Idea: look at numbers $a, 2a, 3a, \ldots, (p-1)a$. Claim this is the same as $1, 2, 3, \ldots, (p-1)$ mod p, possibly in jumbled order. E.g., p = 7, $a = 3, 3, 6, 9, 12, 15, 18 \equiv_7 3, 6, 2, 5, 1, 4$.

None are 0 mod p, so there are only p-1 possible remainders. Enough to show there are no duplicates. $ai \equiv_p aj$ implies $i \equiv_p j$, because a has a multiplicative inverse mod p! No two of the numbers $1, 2, \ldots, p-1$ are equiv mod p, so no duplicates.

Now, since both sets are same mod p, their product is congruent mod p:

$$(p-1)! \cdot a^{p-1} \equiv_p (p-1)!.$$

And since gcd((p-1)!, p) = 1, we know (p-1)! has an inverse mod p, so we can cancel it: $a^{p-1} \equiv_p 1$. Hooray!

We saw earlier that we cannot reduce exponents mod n when doing arithmetic mod n. However, if n is prime, FLT gives us a way to reduce exponents anyway; we reduce mod n-1 instead of mod n.

6 Some Simple Applications of Modular Arithmetic

Theorem 11. A number is divisible by 9 IFF its sum of digits is divisible by 9.

Proof. Say
$$n = \sum_{i=0}^{k} d_i 10^i$$
. Note that $10^i \equiv_9 1^i \equiv_9 1$, so $\sum_{i=0}^{k} d_i 10^i \equiv_9 \sum_{i=0}^{k} d_i \cdot 1$.

We get a stronger result! $\operatorname{rem}(n,9) = \operatorname{rem}(s(n),9)$. The divisibility trick is just checking whether both sides are 0.

Another application: ISBN numbers, (a_1, \ldots, a_{10}) . Can think of the first 9 digits as the actual number, while the 10th digit is a checksum, where $a_1 + 2a_2 + 3a_3 + \cdots + 10a_{10} \equiv_{11} 0$. Given first 9 digits, how do we know a 10th digit exists? Because 10 has a multiplicative inverse mod 11. (Note however, that if this last digit should be 10, then the number is not a valid ISBN.)

Can prove that if a single digit gets copied wrong, the check won't come out to 0 mod 11. Similarly, if two adjacent unequal digits are swapped, check won't come out to 0 mod 11.

Similar ideas are used in other error-correcting scenarios, e.g., redundant memory storage, RAID. A simple hypothetical strategy: have first two disks store bits b_1 and b_2 , while the third disk stores $b_3 := (b_1 \oplus b_2)$. If 2nd disk fails, can recover b_2 as $b_1 \oplus b_3$. (\oplus denotes addition mod 2, or parity.) MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.1200J Mathematics for Computer Science Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>