
6.1200J/18.062J Mathematics for Computer Science Tuesday 12th March, 2024 
Massachusetts Institute of Technology, Spring 2024 
Z. Abel, B. Chapman, E. Demaine revised Tuesday 12th March, 2024 

Lecture 09: Modular Arithmetic 

1 Quick Followup from Last Week 

Proposition 1. For all integers a and b, the common divisors of a and b are precisely the 
common divisors of a and b − a. 

Proof. Suppose d is a common divisor of a and b. Let x, y be integers such that dx = a and 
dy = b. Then d(y − x) = b − a, so d is also a common divisor of a and b − a. 
Conversely, suppose d is a common divisor of a and b − a. Let x, y be integers such that 
dx = a and dz = b − a. Then d(x + z) = b, so d is also a common divisor of a and b. 

Theorem 2 (Bezout’s Identity + The Pulverizer). For any integers a, b, there exist integers 
s, t such that gcd(a, b) = as + bt. We can compute s, t from a, b using the Pulverizer. 

Corollary 3. A number can be written as an i.l.c. of a, b IFF it is a multiple of gcd(a, b). 

Proof. Let g = gcd(a, b). Every ilc of a, b is divisible by g. Conversely, we know g = sa + tb 
for some s, t by Bezout, so every multiple of g (say kg) can be written as (ks)a + (kt)b and 
is therefore an ilc of a, b. 

2 Towards Modular Arithmetic 

‹ What is even+odd? (odd) 

‹ What is the last digit of 357 × 994? (8, b/c 7 × 4 = 28) 

‹ It is curently 3pm. What time will it be in 49 hours? (4pm, b/c 49h is 1h more than 
2 full days) 

‹ Today is Tuesday. What day of the week will it be in 10 days? (Friday, b/c 10 days is 
3 more than a week.) 

‹ What day of the week will it be 100 days from now? What computation do you need 
to do? (rem(100, 2) = 2, so Tues+2=Thurs) 

These are all familiar examples of Modular Arithmetic. When working modulo n, the theme 
is “ignore multiples of n, just focus on remainders”. 

Even/Odd: remainder when dividing by 2. Weekday: remainder when dividing by 7. Last 
digit: remainder when dividing by 10. Hour: remainder when dividing by 12 or 24 (if we 
care about am/pm). 



2 Lecture 09: Modular Arithmetic 

Often called clock arithmetic, because we’re familiar with ignoring multiples of 12 or 24 when 
telling time. 

Defnition 1. We say a ≡n b (pronounced “a is congruent to b mod n”) IFF n | a − b. 

Note: more standard notation for a ≡n b is a ≡ b mod n or a ≡ b (mod n). However, this 
notation can invite confusion (explained later), so we suggest sticking to the a ≡n b notation 
until you are familiar with modular arithmetic. 

We’d like to consider a and b “the same” when their diference is a multiple of n. 

For example, there are only 5 diferent “values” when looking mod 5: 

[0] = {. . . , −10, −5, 0, 5, 10, . . .}
[1] = {. . . , −9, −4, 1, 6, 11, . . .}
[2] = {. . . , −8, −3, 2, 7, 12, . . .}
[3] = {. . . , −7, −2, 3, 8, 13, . . .}
[4] = {. . . , −6, −1, 4, 9, 14, . . .} 

For a general number k, which group will it belong to? Just look at k rem 5. If we write 
k = 5q + r, then k ≡5 r, because k − r = 5q. 

Recall the Division Theorem: 

Theorem 4. For all pairs of integers n, d with d > 0, there exists a unique pair of integers 
q, r where n = qd+r and 0 ≤ r < d. The number q = ndivd is the quotient, and r = n rem d 
is the remainder. 

When working mod n, a number k is always congruent to its remainder (sometimes called its 
residue): if k = nq+r, then n | nq = k −r, so k ≡n r. Claim: the n remainders 0, 1, . . . , n−1 
represent all the possible “groupings” (called residue classes or equivalence classes) mod n. 

Theorem 5. a ≡n b if and only if (a rem n) = (b rem n). 

Proof. If (a rem n) = (b rem n) = r then a = nq + r and b = nq ′ + r for some q, q ′ . So 
a − b = n(q − q ′ ) which is a multiple of n, so a ≡n b. 

Conversely, suppose a ≡n b, so a − b = nk for some k. Write b = qn + r where 0 ≤ r ≤ n − 1, 
so r = (b rem n). Then a = b + nk = (k + q)n + r. Since 0 ≤ r ≤ n − 1, k + q and r are the 
unique values guaranteed by the Division Theorem, i.e., r also equals a rem n. 

So the n diferent remainders when dividing by n divide N into n diferent groups, identifed 
by their remainders. Can think of 0, 1, . . . , n − 1 as the only possible values mod n, and all 
other numbers are congruent to one of these. 



3 Lecture 09: Modular Arithmetic 

3 Interlude: Confusing Notation 

3.1 Remainder 

Remainder can be notated as a rem n aka rem(a, n) aka a mod n. Recall that n is always 
positive, but a can be pos or neg. 

Many languages have the modulo operator a%n which generally behaves like our rem, but not 
always!! By our def, a rem n is always nonnegative, even when a is negative: (−43%10) = 7. 
Python and Mathematica agree with us. But many other languages think negative a values 
should have negative remainders: (−43%10) = −3. Javascript and C/C++, for example. 
And some have both, with two diferent names, e.g., CofeeScript (% vs %%), Lisp (mod vs 
rem), Fortran (mod vs modulo), Haskell (mod vs rem). 

For this class, any version of remainder we use will always mean the nonnegative one. 

Similarly, a//n is commonly used programming notation for integer division, but languages 
disagree on which way to round. We always round down. 

3.2 Two meanings for mod 

Confusing notation: a mod n is commonly used for rem(a, n). Confusing! What does a = 
b mod n mean? Does it mean a ≡ b mod n? Or does it mean a = (b mod n), i.e., a = b rem n? 

Diference: a mod n is a function, with a single defnite value, namely a rem n. Always 
between 0 and n − 1. 

But a ≡ b mod n is a relationship between two quantities. Neither needs to be between 0 
and n − 1. E.g., 12 ≡ 17 mod 5 is a true statement. Their remainders are (12 mod 10) = 2 
and (17 mod 5) = 2. 

4 Putting the Arithmetic in Modular Arithmetic 

The simple statement even+odd=odd says something profound: “no matter which even 
number and odd number we add, the result is always odd”. This generalizes: “if we pick 
any number a ≡5 3 and any number b ≡5 4, adding them will always produce a number 
a + b ≡5 7. (Could also write this as a + b ≡5 2.) 

Theorem 6. If a ≡n b, then for any c, 

1. a + c ≡n b + c, 

2. ac ≡n bc, 

3. a − c ≡ b − c, and 

4. c − a ≡ c − b. 

Proof. By defnition of ≡n, n | a − b. 



4 Lecture 09: Modular Arithmetic 

1. (a + c) − (b + c) = a − b, so n | (a + c) − (b + c). Therefore, a + c ≡n b + c. 

2. ac − bc = (a − b)c, a multiple of a − b, so n | ac − bc. Therefore, ac ≡n bc. 

3. (a − c) − (b − c) = a − b, so n | (a − c) − (b − c). Therefore, a − c ≡n b − c. 

4. (c − a) − (c − b) = b − a, a multiple of a − b, so n | b − a. Therefore, c − a ≡n c − b. 

When adding or multiplying or subtracting, can replace a by anything it is congruent to 
mod n, without changing the result mod n. 

True for the base of exponents as well: 

Theorem 7. If x ≡n y, then for any k ≥ 1, xk ≡n y
k . 

Proof. This is just repeated multiplication, so we proceed by induction on k. 

‹ IH: P (k) := xk ≡n y
k 

‹ Base case (k = 1): this is the theorem assumption. 

‹ IS: Assume that xk−1 ≡n y
k−1 . Then 

k−1 x k ≡n x · x 
k−1≡n y · x k−1 k−1(previous theorem, taking a = x , b = y , and c = x) 

k−1≡n x · y (commutativity) 
k−1 k−1)≡n y · y (previous theorem, taking a = x, b = y, and c = y 

≡n y k 

‹ By induction, for all k ≥ 1, xk ≡n y
k . 

Warning: The same is not true for the exponent k. E.g., 1 ≡5 6, but 21 ̸≡5 2
6 (they have 

remainders 2 and 4, respectively). 

Let’s see an example: What are the last two digits of 

x := 1133511111(6 + 77995000)? 

That’s the same as asking for x rem 100. 

General strategy: replace intermediate calculations with their remainders, as early and often 
as we can. This helps us work with smaller numbers. 

First of all, 
x ≡100 35

11111(6 + 995000). 



5 Lecture 09: Modular Arithmetic 

(Not allowed to just reduce the exponents mod 100.) For the right exponent, 99 ≡100 −1, so 
995000 ≡100 (−1)5000 ≡100 1. For the left term, look for a pattern: 

351 ≡100 35 

352 ≡100 25 

353 ≡100 25 · 35 ≡100 75 

354 ≡100 75 · 35 ≡100 25. 

Will continue bouncing between 25 and 75. So 3511111 ≡100 75. We fnd x ≡100 75·(6+1) ≡100 

25, so this must be the remainder. 

5 Division 

Addition, Subtraction, Multiplication, and bases of exponents can be substituted mod n 
(but not the exponents). 

Can we divide mod n? Suppose 3x ≡6 3. Can we “divide both sides by 3” and conclude 
that x ≡6 1? No. (Consider e.g.: 3 × 5 ≡6 3.) 

A multiplicative inverse of x, denoted x−1 , is a number you can multiply x by to get 1. In 
R, the multiplicative inverse of 3 is 3−1 = 1/3, because 3 · 1/3 = 1. If “1/3” made sense mod 
6, then we could multiply both sides by 1/3 to conclude that 5 ≡6 1. So 3 doesn’t have a 
multiplicative inverse mod 6. 

When do mod n inverses exist for a number a? 

Theorem 8. a has an inverse mod n IFF gcd(a, n) = 1. 

Proof. a has an inverse mod n IFF exists b such that ab ≡n 1 IFF exists b and q such that 
ab − 1 = nq (i.e. ab − nq = 1) IFF 1 is a linear combination of a and n IFF gcd(a, n) = 1. 

Corollary 9. If p is prime and a ̸≡p 0, then a has an inverse mod p. 

Proof. gcd(a, p) must be p (if p | a) or 1 (only other factor of p). Now apply previous 
result. 

Having a multiplicative inverse means we “can cancel from both sides” or “divide” by that 
amount. E.g., 7 and 13 are inverses of each other mod 30. If we know 7x ≡30 14 can we 
conclude that x ≡ 2 mod 30? Instead of dividing, let’s multiply both sides by 13: 

7x ≡30 14 

13 · 7x ≡30 13 · 14 

91x ≡30 182 

x ≡30 2 

So yes, since 7 has a multiplicative inverse, we can “cancel it from both sides”. 



6 Lecture 09: Modular Arithmetic 

What about 7x ≡30 12? This time, we cannot “cancel” in the usual way, but we can still 
multiply by 13: 

7x ≡30 12 

13 · 7x ≡30 13 · 12 

91x ≡30 156 

x ≡30 6 

Important fact: 

Theorem 10 (Fermat’s Little Theorem). If p is prime and a ̸≡p 0, then ap−1 ≡p 1. 

(Not to be confused with Fermat’s Last Theorem. Very diferent, much harder.) 

Proof. Idea: look at numbers a, 2a, 3a, . . . , (p−1)a. Claim this is the same as 1, 2, 3, . . . , (p− 
1) mod p, possibly in jumbled order. E.g., p = 7, a = 3, 3, 6, 9, 12, 15, 18 ≡7 3, 6, 2, 5, 1, 4. 

None are 0 mod p, so there are only p − 1 possible remainders. Enough to show there are no 
duplicates. ai ≡p aj implies i ≡p j, because a has a multiplicative inverse mod p! No two of 
the numbers 1, 2, . . . , p − 1 are equiv mod p, so no duplicates. 

Now, since both sets are same mod p, their product is congruent mod p: 

(p − 1)! · ap−1 ≡p (p − 1)!. 

And since gcd((p − 1)!, p) = 1, we know (p − 1)! has an inverse mod p, so we can cancel it: 
ap−1 ≡p 1. Hooray! 

We saw earlier that we cannot reduce exponents mod n when doing arithmetic mod n. 
However, if n is prime, FLT gives us a way to reduce exponents anyway; we reduce mod 
n − 1 instead of mod n. 

6 Some Simple Applications of Modular Arithmetic 

Theorem 11. A number is divisible by 9 IFF its sum of digits is divisible by 9. 

k k kX X X 
Proof. Say n = di10

i . Note that 10i ≡9 1
i ≡9 1, so di10

i ≡9 di · 1. 
i=0 i=0 i=0 

We get a stronger result! rem(n, 9) = rem(s(n), 9). The divisibility trick is just checking 
whether both sides are 0. 

Another application: ISBN numbers, (a1, . . . , a10). Can think of the frst 9 digits as the 
actual number, while the 10th digit is a checksum, where a1 +2a2 +3a3 + · · · + 10a10 ≡11 0. 
Given frst 9 digits, how do we know a 10th digit exists? Because 10 has a multiplicative 
inverse mod 11. (Note however, that if this last digit should be 10, then the number is not 
a valid ISBN.) 



7 Lecture 09: Modular Arithmetic 

Can prove that if a single digit gets copied wrong, the check won’t come out to 0 mod 11. 
Similarly, if two adjacent unequal digits are swapped, check won’t come out to 0 mod 11. 

Similar ideas are used in other error-correcting scenarios, e.g., redundant memory storage, 
RAID. A simple hypothetical strategy: have frst two disks store bits b1 and b2, while the 
third disk stores b3 := (b1 ⊕ b2). If 2nd disk fails, can recover b2 as b1 ⊕ b3. (⊕ denotes 
addition mod 2, or parity.) 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.1200J Mathematics for Computer Science 
Spring 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Quick Followup from Last Week
	Towards Modular Arithmetic
	Interlude: Confusing Notation
	Remainder
	Two meanings for mod

	Putting the Arithmetic in Modular Arithmetic
	Division
	Some Simple Applications of Modular Arithmetic
	cover.pdf
	Blank Page




