
6.1200J/18.062J Mathematics for Computer Science Thursday 14th March, 2024
Massachusetts Institute of Technology, Spring 2024
Z. Abel, B. Chapman, E. Demaine revised Thursday 14th March, 2024

Lecture 10: Cryptography

1 Cryptography

You’ve seen a couple of lectures on basic number theory now. Why was it in 6.1200? To-
day we will see how GCDs and modular arithmetic are extremely important for computer
security!

Cryptography has become a subject of enormous signifcance to our daily life over the last 20-
30 years. It is frmly a computer science topic, and it uses all sorts of extraordinary math,
stuf you would have never thought would have any application at all. Like... modular
arithmetic!

What is cryptography? In a sentence: Cryptography: Art/Science of Protecting Information.

Idea: Encrypt or “garble” a message that you want to send privately, in such a way that
only certain parties can read it.

The intended recipient should be able to Decrypt or “ungarble” it to recover the original
message.

Convention: Alicekazam is sending encrypted messages to Bobasaur, Bobasaur is decrypting
them, and Eevee is an Eavesdropper who overhears everything being sent, but hopefully still
can’t understand it.

An Encryption method together with a Decryption method is known as a Cryptographic
Scheme.

2 History (NOT EXAMINED)

2.1 Caesar Cipher

Early example: Caesar Cipher. Actually used by Julius Caesar for sensitive military mes-
sages. To encrypt a message m made of letters A to Z: Alicekazam moves each letter forward
3 letters in the alphabet, wrapping around. So CRYPTO becomes FUBSWR. Said difer-
ently: think of A–Z as numbers 1–26, and add 3 mod 26. To decrypt, Bobasaur just subtracts
3 mod 26.

“Security by Obscurity”: this only works if Eevee doesn’t know you’re using it. Otherwise,
it is very easy to break.

How to overcome security by obscurity? Answer: rely on some secret key, or parameter.

2 Lecture 10: Cryptography

2.2 Caesar Shift

Caesar shift: Alicekazam and Bobasaur agree beforehand on a secret shift value k, that Eevee
doesn’t know. To encrypt, Alicekazam adds k mod 26 to each letter. To decrypt, Bobasaur
subtracts k mod 26 from each letter. Above example used k = 3. Rot13 uses k = 13, to
move each letter halfway around the alphabet.

Is this better? Eevee doesn’t know k, so are we safe? Susceptible to a Brute Force attack:
Eevee can just try all 26 options. One will probably look more like English than the others.
E.g., try looking at all 26 shifts of “ORJMJVYNYDQZMBZYDIVTZGGJRRJJY”. This
site makes that easy: https://www.dcode.fr/caesar-cipher.

2.3 Substitution Cipher

Need larger set of secret keys, known as the key space. One idea: Alicekazam and Bobasaur
agree on a table mapping each letter to a diferent letter. E.g., A → X, B → T , C → W ,
etc. There are 26! diferent keys, so Eevee isn’t going to try them all!

Susceptible to Frequency Analysis . E.g., if W is the most common letter in your message,
W probably decrypts to the most common English letter, E. (Except in special cases, like A
Void, a novel that contains no Es, which is translated from the french La Disparition, which
also has no Es.)

2.4 German Enigma

Imagine changing the shift each time? The WWII German Enigma Machine used a compli-
cated mechanical device (about the size of a lunchbox) to change the shift values depending
on the letters in the message itself, as well as the secret initial confguration of the machine.
Complicated arrangement of rotors and wires and refectors, oh my! For a total of around
3 · 10114 diferent possible settings. Can’t possibly check them all.

“Security by Hubris”: this might not work if Eevee is smarter than you are. The engineer
who developed Enigma did not know how to break it, and assumed that nobody else could
either. But still, Allies broke the code. Developed a room-sized machine (called “bombe”
because of the ticking sound). Used, among other things, knowledge about the kinds and
formats of messages often sent, e.g., weather reports that all started with the same phrase.
This is known as a Known Plaintext Attack . Lots of other clever ideas went into it too.

2.5 One-Time Pad

Diferent idea: Caesar Shift, but with bigger numbers. Instead of encoding a single char-
acter at a time, group letters into much larger numbers. An example (bad, but that’s ok):
HELLOWORLD, using 1–26, becomes 08051212152315181204, just a 20-digit number. Let’s
work with numbers with hundreds of digits! No problem. Or do it in ASCII and read the
binary bits. The encoding doesn’t matter. What matters is that now, messages are numbers.

Pick a large n (imagine 1000 bits), and now a message m is just a number in the range

https://www.dcode.fr/caesar-cipher

3 Lecture 10: Cryptography

0, 1, 2, . . . , n − 1. If Alice and Bob agree on a number 0 ≤ k ≤ n − 1, then we can Caesar
Shift: Alice sends enc(m, k) = rem(m + k, n), and Bob computes m = rem(enc(m, k) − k, n).

Advantages: k is arbitrary, so without knowing k, any message can have any encoding! No
information is revealed. If k is chosen uniformly randomly, then m + k is also uniformly
random. Will learn more about randomness later.

Disadvantage 1: Message has to be smaller than n. What if Alicekazam needs to send a
longer message? Break it into chunks of size < n and send each with key k? No, bad things
happen when reusing k.

First bad thing: Known Plaintext Attack : If Eevee ever gets hold of the encrypted and
unencrypted message, or has some information on it (like the German weather reports), then
she can subtract to learn k! On future messages, she can subtract k and read Alicekazam’s
messages.

′ ′ ′ ′ Second bad thing: Say enc(m1, k) = m1 and same for enc(m2, k) = m2. Then m1 − m2 ≡n

m1 − m2. So info is leaking about how two messages relate to each other. It mushes the two
messages together, but still a lot of info is revealed.

We can’t re-use k. That’s why this scheme (and ones like it) is called a One-Time Pad .

So for longer messages, Alicekazam will just send the new k value before each one. . . Oh,
huh. Well, maybe she’ll encrypt the new k value frst. . . But that needs us to already have
an earlier agreed-upon key. . . Hm. If she had a secure way to send a new one-time pad, then
she’d just use that method instead! Drat.

2.6 Dife-Hellman

A clever way for Alicekazam and Bobasaur to agree on a secret value k, over public channels,
without Eevee being able to discover it. Used every time you connect to an https website
(the “s” is for “secure”).

Informal idea: suppose we have a “nice” One-Way Function f (a function that is easy to
compute but hard to invert). Alicekazam can choose some random a and send f(a) to
Bobasaur. Bobasaur can choose some random b and send f(b) to Alicekazam. Eevee only
knows f(a) and f(b). Alicekazam and Bobasuar also each know one of a, b. If we can come
up with a function g that somehow combines a and b and applies f only once, we could hope
that g(a, b) could be computed from (a, f(b)) or from (f(a), b), but not from (f(a), f(b)).

Now, formally: f and g will be modular exponentiation. Choose n to be a large prime
number, 100s of digits. Alicekazam chooses a random number 1 < c < n − 1 and sends
it to Bobasaur. Then, Alicekazam chooses a random number a, while Bobasaur chooses
a random number b. Alicekazam computes f(a) := rem(ca, n), and Bobasaur computes
f(b) = rem(cb, n), and they send these numbers to each other. Finally, Alicekazam computes
x := rem(f(b)a, n), and Bobasaur computes y := rem(f(a)b, n). Claim: x = y, so this will
be their shared secret key. They can use this number as a one-time pad.

b)a abNote that x ≡n f(b)
a ≡n (c ≡n c , and the same is true of y, so they’re equal.

4 Lecture 10: Cryptography

Another note: how do Alicekazam and Bobasaur compute things like rem(ca, n)? Both a
and c have hundreds of digits! ca is huge! (That’s one reason we reduce mod n, so everything
stays reasonable.) And we don’t have time for a diferent multiplies! (That’s what repeated
squaring is for: can compute rem(ca, n) with just O(log a) arithmetic operations mod n.)

Finally: Eevee knows c, ca , and cb . Why can’t she recover a from this, and then compute
(cb)a = x? If these were actual integers, she could just take a log! But we’re working mod
n, so recovering a from c and ca mod n is known as the Discrete Log Problem . Nobody
(not even Eevee) knows a computationally tractable method to solve this.

3 RSA

Downside of Dife-Hellman: need to actively agree on key before sending a message. If
Alicekazam wants to send Bobasaur an encrypted email, she doesn’t want that back-and-
forth frst!

One more protocol: RSA = Rivest, Shamir, Adleman, the three inventors of the crypto-
graphic scheme. It’s really a workhorse of modern internet security. And they did it here at
MIT! And won a Turing award for it, in 2002!

Public-Key cryptosystem. You can tell everybody the encryption key, publicly! But it
only lets you encrypt, not decrypt. You have the accompanying secret key that only you
know, that you can use to decrypt. Boggling that this is possible!

Start with two large primes, p and q. Keep these primes secret, but publish n := pq. Then,
choose a large number e that is coprime to (p − 1)(q − 1). Your public key is kp := (n, e).

Next, compute d which is a multiplicative inverse of e modulo (p − 1)(q − 1), which we can
do with the Pulverizer, because e is coprime to (p −1)(q −1). Keep p, q, d secret. Your secret
key is ks := (n, d).

To encrypt message m, compute E(m, kp) := rem(me, n). To decrypt an encrypted message
c, compute D(c, ks) := rem(cd, n).

ed ed ≡nAfter encrypting and then decrypting, you’re computing (me)d ≡n m . Claim: m m.

Why is this true?! Fermat’s Little Theorem!

We know ed = 1 + t · (p − 1)(q − 1) for some integer t ≥ 0. Let’s assume m is relatively
prime to pq. (In practice, these primes are much too big to stumble on “by chance”, so this
assumption doesn’t matter in practice. We’ll see how to remove it in Recitation.)

Working mod p, we fnd

ed ≡p m 1+t(p−1)(q−1) ≡p m · (mp−1)t(q−1) ≡p m · 1t(q−1) ≡p m.m

ed − m.The same is true mod q. So p and q both divide med − m, so pq divides m In other
words, med ≡pq m. † † †

5 Lecture 10: Cryptography

3.1 Security

Public: n = pq and e. Private: p, q, d. Relies on Factoring being hard! No efcient method
known to factor n into its two primes. (Not true with Quantum Computers! Which we can’t
actually build yet. But soon? Maybe?)

Important point: we are assuming factoring is hard; we don’t have a proof. No algorithm
to efciently factor large numbers is currently known publicly, but that doesn’t mean it
doesn’t exist! It might! It might even be known right now, by someone or some intelligence
agency that just hasn’t shared it around. No way to know for sure. In fact, we are assuming
even more. If we assume the Extended Riemann Hypothesis, then computing the secret key
(n, d) from the public key (n, e) is (essentially) the same problem as factoring. However,
without ERH, we don’t actually know that breaking RSA will always factor the modulus n.
Further, it is in principle possible that we could decrypt single messages without computing
the secret key at all. This is why, in addition to assuming factoring is hard, we also assume
ERH and/or the RSA Assumption, which says that computing eth roots modulo pq is also
hard.

Even though we don’t have a full, unconditional proof of security for RSA, we are still much
more confdent in its security than in something like Enigma. The above assumptions have
been well-studied for many years by many experts, plus there are large cash prizes for very
incremental progress towards breaking RSA, so it is safer to assume that nobody yet knows
how to break it.

3.2 Finding p and q

How do we fnd large primes p and q? Two key insights.

1. Numbers can be easily tested for primality. This is the Miller-Rabin algorithm from
Pset. So, naive idea: pick random 300-digit numbers and test for primality, until one
of them is prime! Are there enough primes for that?! Don’t they get more and more
sparse as numbers get big! Wouldn’t this take forever?

2. This is actually fast, because there are lots of primes. Prime Number Theorem: π(k) ∼
10300k/ ln k. Around k = , the density of primes is about 1/ ln(10300) ≈ 1/700, so in

expectation, 700 tries is enough! This is fast.

3.3 Warning

Don’t implement RSA yourself now, expecting it to be secure! This is a simplifed version,
and lots of attacks are known without further precautions.

4 Chinese Remainder Theorem

In the RSA proof above († † †), we could have simplifed our proof by invoking a powerful
theorem called the Chinese Remainder Theorem (CRT). Roughly speaking, CRT says that

6 Lecture 10: Cryptography

if p and q are coprime, then computing modulo pq is the same as computing modulo p and
modulo q separately.

As a simple example, consider the following: Suppose I have an integer 0 ≤ x < 55 where
x ≡5 4 and x ≡11 7. That’s enough information to uniquely identify x. What is x in this
case? We can proceed by trial and error. The numbers in this range that are congruent to
7 modulo 11 are {7, 18, 29, 40, 51}. Of these, only x = 29 is also congruent to 4 modulo 5.

Theorem 1 (CRT). Suppose p and q are coprime, and a, b ∈ Z. Then, modulo pq, there
exists a unique solution x to the following system of modular congruences:

x ≡p a (1)

x ≡q b (2)

Proof of existence. Let’s start by thinking about the special case where a = 0. Defne p−1

to be a modular inverse of p modulo q, and defne eq := p−1p. Notice that eq ≡p 0 because
it has a factor of p. By construction, eq ≡q 1, so beq ≡q b. This means that x = beq is our
desired solution.

For the more general a and b, we can also defne q−1 to be a modular inverse of q modulo p,
ep := q−1q, and x := aep + beq. Now, working modulo p:

x ≡p aep + beq

≡p aq −1 q + bp−1 p

≡p a1 + bp−10

≡p a

Also, working modulo q:

x ≡q aep + beq

≡q aq −1 q + bp−1 p

≡q aq −10 + b1

≡q b

So x satisfes Congruences 1 and 2.

Proof of uniqueness. Suppose x and x ′ both satisfy Congruences 1 and 2. We want to prove
that x ≡pq x ′ . To do this, we show that y := x − x ′ is a multiple of pq.

′ ′ ′ We know that x ≡p a, x ≡p a, x ≡q b, and x ≡q b. Putting these together, we have x ≡p x
and x ≡q x ′ . Unpacking defnitions, this says that p|y and q|y, so we may take integers kp, kq

such that pkp = qkq = y. Now gcd(p, q) = 1, so there exist s, t such that:

1 = ps + qt

kp = pskp + qtkp

= ys + qtkp

= qkqs + qtkp

= q(kqs + tkp)

7 Lecture 10: Cryptography

We have q | kp, so pq | pkp = y, as desired.

Note: the interactive demos from lecture (including the one that didn’t project) are on
Canvas under Files/Uploaded Media. They should run with a standard Python distribution
that includes tkinter.

MIT OpenCourseWare
https://ocw.mit.edu

6.1200J Mathematics for Computer Science
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Cryptography
	History (NOT EXAMINED)
	Caesar Cipher
	Caesar Shift
	Substitution Cipher
	German Enigma
	One-Time Pad
	Diffie-Hellman

	RSA
	Security
	Finding p and q
	Warning

	Chinese Remainder Theorem
	cover.pdf
	Blank Page

