
6.1200J/18.062J Mathematics for Computer Science Tuesday 2nd April, 2024
Massachusetts Institute of Technology, Spring 2024
Z. Abel, B. Chapman, E. Demaine revised Monday 1st April, 2024

Lecture 13: Connectivity and Trees

Motivation: getting around! If graph is servers, how to route messages from one particular
server to another? Road networks, driving directions. (Let’s pretend for today that one-way
roads don’t exist!). What about efficiency? Shortest route, or fastest route (might not be
the same!). In 6.1210 we’ll study lots of optimization problems like this.

But let’s walk before we run.

1 Walks

Definition 1. A walk is a sequence of vertices (v0, v1, . . . , vk) that follows edges: {vi, vi+1} ∈
E(G) for each i. Can backtrack, revisit vertices or edges, anything goes! This walk has length
k. (NB: there are k edges, and k + 1 vertices.)

H

G

F

E

D

C

B
A

I

J

K

L

M

N

O

P



2 Lecture 13: Connectivity and Trees

Example: (J,K, J, I, A,B,C,D,B)

Definition 2. A trail is a walk that does not repeat edges.

Example: (K, J, I, A,B,C,D,B)

Definition 3. A path is a trail that does not repeat vertices.

Example: (K, J, I, A,B,C,D)

Definition 4. In a graph G, vertices a and b are connected iff there exists a walk from a
to b.

Example: J and B are connected; A and L are not.

Q: Is P connected to itself? I.e., does there exist a walk from P to itself?

A1: Yes, (P,O, P ) - walk of length 2. But what about N? Is N connected to itself?

A2: Still yes, the walk (N) has length 0, and starts and ends at N . Empty walks are fine!

Possible confusion: connected to is more general than adjacent to; the latter means
“share an edge”.

Definition 5. The whole graph G is connected iff every pair of vertices is connected. “Can
get from anywhere to anywhere”.

Theorem 1. If there exists a walk from a to b, then there exists a path from a to b.

Proof. Common idea: take the longest or shortest! Since we know there exists at least one
walk from a to b, pick a shortest walk, (a = v0, v1, . . . , vk = b). If any vertex is used twice, say
vi = vj where i < j, we can skip over the middle: use (v0, . . . , vi), followed by (vj+1, . . . , vk).
Since vi = vj, these stitch together to a walk from a to b, with length k − (j − i) ≤ k − 1,
which contradicts assumption that k was minimal. So the shortest walk from a to b is a
path.

2 Connected Components

From picture, seems like we should be able to split graph into smaller connected pieces.
These are known as connected components .

Useful! In google maps, there used to be an easter egg where asking for driving directions
from USA to Japan would instruct you to find a Kayak. Since there are no roads connecting
them, might as well consider the American road network as a completely separate graph
from the Japanese road network. For many graph problems, if we just look at one connected
component at a time, we can pretend that the graph is in fact connected!



Lecture 13: Connectivity and Trees 3

Definition 6. For v ∈ V (G), the connected component of v is the subgraph induced by
the set of vertices connected to v (aka reachable from v).

Theorem 2. Each connected component is, in fact, connected. Furthermore, these connected
components form a partition of G: every vertex and every edge belongs to precisely one
connected component.

Proof. Idea: if v’s and w’s connected components have any vertices in common, then they
are identical!

3 Bridges of Königsberg

River Pregel ca. 1700, in the German city of Königsberg (now Kaliningrad, Russia).

Goal: find a walk that crosses each bridge exactly once and returns to starting point.
Note: Königsberg means King’s Mountain, cf. burg (fortress) as in Hamburg. Königsberg
has a fortress and a maximum elevation of about 25m.

Definition 7. A walk is closed iff it begins and ends at the same vertex.

Definition 8. A tour is a closed trail.

Definition 9. A cycle is a tour that has positive length and does not repeat vertices (except
at the very start/end).

Definition 10. A tour is Eulerian if it uses every edge exactly once and visits every vertex.

Definition 11. A trail is (semi-)Eulerian if it uses every edge exactly once and visits
every vertex.

Definition 12. A graph is Eulerian iff it has an Euler tour.

Definition 13. A graph is semi-Eulerian iff it has an Euler trail.

Warning: Be careful with terminology here!
In the context of trails, “semi-Eulerian” can be replaced with “Eulerian” or “Euler”, and
“trail” can be replaced with “walk” or “path”.
In the context of tours, “Eulerian” can be replaced with “Euler”, and “tour” can be replaced
with “circuit” or “cycle”.
Some of these are misnomers! An Euler cycle is not necessarily a cycle; an Eulerian path is
not necessarily a path, nor does it make a graph Eulerian.



4 Lecture 13: Connectivity and Trees

Example: K5 is Eulerian (edges are numbered in order of Euler tour).

1

6 10

5

2
9

8

3

7
4

Example: A line graph is semi-Eulerian (edges are numbered in order of Euler trail).

1 2 3 4

The Königsberg problem (solved by Euler in 1736) was basically the start of Graph Theory
as a field. It is the question of whether the (multi)graph below is Eulerian.

Observations: if a graph G has an Euler Tour, then

• every vertex must have even degree. Why? enter and exit the same number of times!

• G must be connected. Why? Following the tour hits all vertices!

Immediately, Königsberg graph doesn’t work, because there are odd vertices. In fact, they’re
all odd! However, it turns out that the bridges of Kaliningrad are now semi-Eulerian. The
city was razed and rebuilt during/after WWII and now looks more like this (one Euler trail
in red):

●

◆▶ 

★

✿ ● ▶ 

✿ 

★ ◆



Lecture 13: Connectivity and Trees 5

Are the observations sufficient? Do all connected graphs with all even degrees have Euler
Tours? Yes!

Theorem 3. A connected simple graph has an Euler tour if and only if all vertices have
even degree.

Proof. For the first direction, suppose G is a connected simple graph with an Euler tour W .
Let v be a vertex of G. If we follow W from v, then for every time we leave v, we must
return to v. Each of these departures and arrivals follows a distinct edge, and we have the
same number of departures as arrivals, so v has even degree.

For the converse direction, let W be a maximum-length walk in G with no repeated edges.
We’ll show W is an Euler tour.

First, claim W is closed. If not, say its endpoints are a ̸= b. Then a and b have an odd
number of unused edges (“unused” means not belonging to W ), and every other vertex has
an even number of unused edges. This is because every time we enter-and-then-exit a vertex,
we use two of its edges. So b has an odd number of unused edges, so it can take another step
and make W longer. Contradiction, since we assumed W was already longest!

Now, claim that every edge in G is also in W . If not, say {u, v} is unused. Let w be a vertex
on W . Since G is connected, there is a walk π from w to u and then (immediately) to v. π
contains an edge not in W , so let {s, t} be the first edge in π that is not in W . Then s is
on W , so since W is closed, we may start at s, and then follow W back to s and then to t.
This gives a longer walk than W with no repeated edges. Contradiction, since we assumed
W was already longest!

Corollary 4. A connected graph has an open Euler trail (doesn’t start and end in the same
place) iff exactly two vertices have odd degree.

Proof. As before, one direction is easy. For the converse direction, suppose G is a connected
graph, and exactly two vertices u and v have odd degree. We now have three cases:

• Case 1 (G does not contain the edge {u, v}): Create G′ by adding edge {u, v} to G.
G′ has an Euler tour, from which we may remove {u, v} to get an Euler trail in G.

• Case 2 (G contains the edge {u, v}, and removing it does not disconnect G): Create
G′ by removing edge {u, v} from G. G′ has an Euler tour, to which we may add {u, v}
to get an Euler trail in G.



6 Lecture 13: Connectivity and Trees

• Case 3 (G contains the edge {u, v}, and removing it disconnects G): Remove edge
{u, v} from G to create two connected graphs G′ containing u and G′′ containing v.
Each of G′, G′′ has an Euler tour. Create an Euler trail for G by starting at u, following
the Euler trail of G′ back to u, taking edge {u, v}, and then following the Euler trail
of G′′ back to v.

These cases are exhaustive, and in each case G has an Euler trail.

4 Trees

Trees are extremely useful. They come up all over computer science. Many data structures
are based on trees, many algorithms make critical use of trees. They’re some of the most
basic important graphs you can learn about.

Lots of equivalent ways to define trees, each with their own insights.

The usual definition involves cycles; recall:

Definition 14. A cycle is a closed walk of length at least 3 that doesn’t repeat edges or
vertices, except that the starting and ending vertices are the same.

Non examples: empty walk doesn’t count. Back-and-forth across a single edge doesn’t count.

Idea: trees are minimal, stripped down, without redundancy. If roads are expensive to build,
want to build as few as possible, while still being able to get from anywhere to anywhere.

Cycles are a form of “redundancy” (can go either way around the cycle), so trees should
avoid cycles:

Definition 15. A tree is a connected, acyclic graph. (Acyclic means no cycles.)

Example:



Lecture 13: Connectivity and Trees 7

A perhaps surprising fact:

Theorem 5. A tree with n vertices has exactly n− 1 edges.

Before proving this theorem, let’s see our most useful workhorse for proving things about
trees.

Theorem 6. Every tree with n ≥ 2 vertices has at least 2 vertices with degree 1. These are
called leaves.

Proof. Take a longest path v0, v1, . . . , vk. There’s at least one edge because connected and
n > 1, so the endpoints v0, vk are different. Claim: v0, vk are leaves. If not, then v0 must
connect to another vertex other than v1. If it is another vi, we’ve found a cycle! If it is
something other than a vi, we can make the path longer!

Now we can prove that every tree with n vertices has n− 1 edges:

Proof. We’ll use induction on n, where P (n) is the statement “every tree with n vertices has
exactly n− 1 edges”.

Base case: n = 2. The only connected graph with 2 vertices has 1 edge, so we’re good.

Inductive step: Assume n ≥ 2 and assume P (n): “every tree with n vertices has exactly
n− 1 edges”.

Must prove P (n+ 1): “every tree with n+ 1 vertices has exactly n edges”.

So suppose T is a tree with n + 1 vertices; we must show it has n edges. (Note: we’re
unpacking things slowly, to make sure we really are proving what we need to, namely P (n+1).

●

■
▶ 

❖

★ ✖ 

✿⦿

✳ 



8 Lecture 13: Connectivity and Trees

This is how to avoid buildup error. It’s tempting to say “let T be a tree with n vertices”,
but that’s not what P (n+ 1) asks for.)

Let’s prune the tree! By the lemma, T has at least one leaf, v. Let T ′ = T − v be the graph
that remains after removing the leaf v, along with its single edge. Claim T ′ is a tree with
n vertices. (Will prove this in a bit; don’t need to re-prove it every time!) By assumption
P (n), we know T ′ has n− 1 edges. And T differs by just one edge (from the leaf), so T has
n edges, as claimed.

But why is T ′ a tree? It is still acyclic: removing edges can’t create new cycles. It is also
connected: for two vertices u,w other than v, they are connected in T by a path, and this
path can’t use v because it has degree 1, so u,w remain connected to each other in T ′.
Acyclic and connected implies tree.

This is a very common pattern: remove a leaf, apply inductive hypothesis to smaller tree,
then put the leaf back.

NB: Important that we removed a leaf, not some other arbitrary vertex! Removing any
other vertex will not produce a connected graph, so what remains won’t be a tree. (Show
example in picture.) In general, acyclic graphs are known as forests, because each connected
component is a tree.

Example:

With a bit more work (see book), can prove lots of different characterizations for trees:

Theorem 7. If graph G has n vertices, the following are all equivalent to G being a tree:

• G is connected and acyclic. (This is the definition.)

• G is connected and has exactly n− 1 edges.

• G is acyclic and has exactly n− 1 edges.

• Every pair of vertices in G is connected by a unique path.

Oddish

Gloom

BellossomVileplume

Bulbasaur

Ivysaur

Venusaur

Mega Venusaur Gigantamax Venusaur

Rowlet

Dartrix

Decidueye
Hisuian 
Decidueye



Lecture 13: Connectivity and Trees 9

• G is minimally connected.

• G is maximally acyclic.

See book for proofs.



MIT OpenCourseWare
https://ocw.mit.edu

6.1200J Mathematics for Computer Science
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Walks
	Connected Components
	Bridges of Königsberg
	Trees
	cover.pdf
	Blank Page




