
6.1200J/18.062J Mathematics for Computer Science Tuesday 31st October, 2023
Massachusetts Institute of Technology, Spring 2024
Z. Abel, B. Chapman, E. Demaine revised Wednesday 24th January, 2024

Lecture 14: Digraphs and DAGs

1 Directed analogs of all our defs/theorems

Definition 1. A digraph or directed graph G = (V,E) is a set V of vertices or nodes
together with a subset E ⊆ V × V of directed edges.

Example:

An edge (u, v) ∈ E (where u ∈ V and v ∈ V), drawn and sometimes written as u → v,
represents a directed edge from u to v.

Only difference from undirected graph def: edges are (u, v) (order matters), instead of {u, v}.

Some interesting consequences:

• Self-loops are allowed! (v, v)

• Antiparallel edges are allowed! (u, v) and (v, u) are different edges.

Note: still not allowing parallel edges; can’t have two arrows from u to v.

●

▲

■

♦

★ ♥
✿

2 Lecture 14: Digraphs and DAGs

Another note: we will never mix undirected and directed edges in the same graph! Make
sure you know which kind of graph we’re talking about in any given problem.

More examples:

• State machines were secretly digraphs the whole time! States are vertices, and transi-
tions are directed edges.

• Social networks: Facebook friend graph is undirected, but Twitter follower graph is
directed.

• Road networks, Google Maps. Some roads are bidirectional: model with two directed
edges, one in each direction. (Recall: don’t mix undirected with directed!)

• Web graph: which pages link to other pages on the internet. Idea of Page Rank,
the core of Google’s search engine, is that the graph structure itself can reveal crucial
information. Idea: a site gains high score by being linked to from lots of pages with high
score. A self-referential system, solved with complicated linear algebra and distributed
algorithms, still an active area of research, lots of applications outside of Google.
(Named not just for web pages, but for co-founder Larry Page! Like German Chocolate
cake named for an American baker, Samuel German. And MySQL, named for the dev’s
daughter, My. Twitter has some less credible examples.1)

Lots of analogs of concepts and theorems we’ve discussed.

1.1 Degree

Undirected: degree deg(v) is the number of incident edges.

Directed: in-degree deg−(v) (or degin(v)) is the number of edges (u, v) pointing at v, and
out-degree deg+(v) (or degout(v)) is the number of edges (v, w) coming from v. There is not
a combined “degree” for digraphs.

Handshake lemma:
∑
v∈V

deg−(v) = |E| =
∑
v∈V

deg+(v).

1.2 Walks

Directed case: a (directed) walk is a sequence of vertices v0, . . . , vk such that (vi, vi+1) ∈ E(G)
for each i. Only difference is that order across the edge matters.

1https://twitter.com/fred_delicious/status/1265758435175534594?lang=en

https://twitter.com/TheAndrewNadeau/status/851534371949600768

https://twitter.com/fred_delicious/status/1265758435175534594?lang=en
https://twitter.com/TheAndrewNadeau/status/851534371949600768

Lecture 14: Digraphs and DAGs 3

Example: , , , ,

Example: , (Walk of length 1)

Example: (Walk of length 0)

Non-example: , , (First edge goes the wrong way)

Trails, paths, closed walks, tours are all defined exactly as in undirected case. Still have:

Theorem 1. If there exists a directed walk from u to v, then there exists a directed path
from u to v.

Same proof: the shortest walk from u to v must be a path.

1.3 Cycles

A cycle is still a tour that has positive length and does not repeat vertices (except at the
very start/end), just as we defined in Lecture 13, Definition 9.

Recall: in the undirected case, we noted (Definition 14) that a cycle must have length at
least 3, which is not true in the directed case. This is because self-loops are cycles of length
1! And a pair of antiparallel edges are a cycle of length 2! (You may interpret ! as factorial
or excitement.)

●

●

●

▲

♦

♦

♦

■

■

■

★

★ ★

♥

♥

✿

✿ ✿

4 Lecture 14: Digraphs and DAGs

1.4 Connectivity

Undirected: u and v are connected iff there exists a walk from u to v.

In directed land, this isn’t symmetric! There might be a walk from u to v but not from v to
u, so direction matters.

Definition 2. A vertex u can reach v, or v is reachable from u, iff there is a u-v walk.

Definition 3. Two vertices u and v are strongly connected iff there is a directed walk
from u to v and a directed walk from v to u.

Definition 4. A graph G is strongly connected iff every pair of vertices of G is strongly
connected.

Example: can reach both and , but not .

Example: Every vertex v can reach itself.

Example: and are strongly connected.

Example: and are not strongly connected.

Example: Every vertex v is strongly connected with itself.

●

●

▲

▲

♦

♦

■

■

■

★

★

★

♥

♥

✿

Lecture 14: Digraphs and DAGs 5

1.5 Euler Tours

An Euler Tour is still a tour that uses every edge exactly once (and visits all vertices). Can
prove a similar theorem:

Theorem 2. A directed graph has an Euler tour iff it is strongly connected, and every vertex
has in-degree equal to its out-degree.

Proof is exactly as the proof of the corresponding theorem for undirected graphs. We will
see an application of this in recitation.

1.6 Condensation Graphs

Definition 5. The strongly connected component (SCC) of v, often denoted [v], is
the induced subgraph on the set of vertices that are strongly connected with v.

Note: we often abuse notation and equate [v] (a graph) with its vertex set.
Like connected components in undirected graphs, SCCs partition the vertices of a digraph,
but be warned that some edges travel between components! This gives an interesting concept
that we did not observe in the undirected case:

Definition 6. The condensation graph of a graph G = (V,E) is H = (C,E ′) where

C = {[v] : v ∈ V }, and

E ′ = {([u], [v]) : [u] ̸= [v] and (u, v) ∈ E}.

Essentially, this is the graph produced by collapsing every SCC into a single vertex, and
then removing all self-loops.

Example: Left graph has 5 SCCs:

•

[]
=

[]
=

[]
=

{
, ,

}

•

[]
=

{ }

•

[]
=

{ }

•

[]
=

{ }

•

[]
=

{ }
Right graph is condensation of left graph.

●

▲ ▲

♦ ♦

●■ ■ ★ ★

♥ ♥
✿ ✿

6 Lecture 14: Digraphs and DAGs

7→

Example: Left graph has 2 SCCs:

•

[]
=

[]
=

[]
=

[]
=

{
, , ,

}

•

[]
=

{ }

Right graph is condensation of left graph.

7→

●
●

▲ ▲

♦ ♦

■ ■

★
★

♥ ♥

✿ ✿

Lecture 14: Digraphs and DAGs 7

2 DAGs

In undirected land, an acyclic graph is a forest. The directed analog is:

Definition 7. A Directed Acyclic Graph, or DAG, is a digraph with no cycles.

Example:

Non-Example:

Example:

In fact, every condensation graph is a DAG!

Many uses: scheduling and precedence, concurrency control, data processing, etc.

8 Lecture 14: Digraphs and DAGs

Example: Getting Dressed! directed edge u → v when we must put on u before v. E.g.,
pants before belt, shirt before jacket, etc.

L Sock R Sock Pants Shirt

L Shoe R Shoe

Belt Jacket

Scarf HatOvercoat

Observe: shirt must precede jacket because of edge. But also, shirt must precede scarf
because of longer path “shirt to jacket to scarf”. Belt and hat are unrelated, so they can be
put on in either order.

In general, u must precede v when v is reachable from u.

Edge from shirt to scarf is not needed, since it is already encoded by the path “shirt to jacket
to scarf”. Often want to remove those redundant edges. An edge is called a covering edge
iff it is the only path between its endpoints. Otherwise, it is redundant. This pared down
DAG formed from just the covering edges encodes the same precedence relation, but often
with far fewer edges. Sometimes called the Hasse Diagram for the DAG.

Example: Red edges are redundant above, black edges are covering edges, and black subgraph
is the Hasse diagram.

Why must the graph be a DAG in scheduling problems? Which comes first, chicken or egg?

(job vs work experience?)

2.1 Topological Orders

Dress up! In what order should we get dressed?

Can we start with belt? No, need pants first. In general, must start with a minimal element.
Otherwise: https://www.youtube.com/watch?v=aYYTYCofdXs

Definition 8. A source (resp. sink) in a digraph is a vertex with in-degree (resp. out-
degree) 0.

Definition 9. A source (resp. sink) in a DAG is a minimal (resp. maximal) element.

In our example, that’s pants, L sock, R sock, and shirt.

After putting on shirt, jacket becomes minimal! Still not belt, though, b/c we haven’t put
on pants yet.

Does it matter which minimal element we pick! No! There can be many orders. Let’s pick
a good one. . .

https://www.youtube.com/watch?v=aYYTYCofdXs

Lecture 14: Digraphs and DAGs 9

Definition 10. A topological order (also called topological sort) of a DAG is a list
of all the vertices such that every vertex appears earlier in the list than every other vertex
reachable from it.

Theorem 3. Every finite DAG has a topological order!

Proof. Idea: Greedy alg: repeatedly pick and remove a minimal element, just like in the
example. Must show

Lemma 4. Every finite DAG has a minimal element.

Proof. Similar to proof that leaves exist. Can show that the longest path starts at a minimal
element and ends at a maximal element; otherwise, we could either make it longer or would
find a cycle.

Now we can use induction. Let P (n) be the predicate “Every n-vertex graph has a topological
order.”

• Base case (n = 0): The empty sequence is a topological order

• Inductive step: Assume P (n− 1). We wish to prove P (n). To this end, let G = (V,E)
be a graph with n vertices. Let v be a minimal element of G, and let H be the induced
subgraph on V \ {v}. H has n − 1 vertices, so has a topological order. Prepend v to
this topological order to get a topological order for G.

2.2 Parallel Task Scheduling

Goal: suppose we have as many helpers as we could want, and can do many tasks in parallel,
as long as all of their prereqs are already finished. What’s the fewest number of stages
needed?

Could consider this getting dressed “à la Downton Abbey”, but Wallace and Gromit have a
better video clip: https://www.youtube.com/watch?v=EGSyw2dHhrc.

Definition 11. Say that two vertices u, v are comparable if u can reach v or v can reach
u.

A chain is a subset of vertices in which every pair is comparable.

Vertices in a chain must fall along a single path (but don’t need to be all of the path!).

E.g., {Pants, Overcoat, Belt} is a chain. How about {Shirt, Hat}? Yes.
How about {L Sock, R Sock, L Shoe}? No, L sock and R sock are not comparable.

No pair in a chain can be processed at the same time, since one will always be a prereq for
the other. Therefore,

https://www.youtube.com/watch?v=EGSyw2dHhrc

10 Lecture 14: Digraphs and DAGs

Fact 1. The shortest parallel schedule is ≥ the length of the longest chain, no matter how
many tasks you can do at the same time!

Definition 12. A maximum-size chain is called a critical path.

Example: {Shirt, Jacket, Scarf, Overcoat}

Warning: A critical path is a set of vertices. Its size is the number of vertices. It is not
a path, but it does correspond to an obvious path whose length differs from the size of the
critical path by 1.

By contrast,

Definition 13. An antichain is a subset of vertices in which every pair of distinct vertices
is incomparable.

Example: {L Sock, R Sock, Pants, Hat, Scarf} is a maximum-size antichain.

We can perform a subset of tasks together iff they form an antichain.

Note: since the largest antichain has size 5, extra helpers after the fifth don’t actually have
anything to do!

Can now prove a more surprising fact:

Fact 2. The shortest parallel schedule is equal to the length of the longest chain.

Proof. Idea: do all minimal elements at the same time, then repeat.

Let depth(v) be the length of the longest path that ends at v. Note v is minimal iff depth(v) =
0. Claim depths go from 0, 1, . . . , c− 1, where c is the length of the critical path.

Note: if u can reach v ̸= u, then depth(u) < depth(v). Take a path to u with length
depth(u). Append to this a path from u to v, to find a longer path ending at v. So
depth(v) = longest path to v ≥ length of this path to v > depth(u).

In particular, this means: all prereqs for v have strictly smaller depths than v. Also, Vi is
an antichain.

Now, on step i, we can do all of Vi in parallel, since all prereqs for these tasks have already
been completed. This schedule has exactly c steps, as needed.

In the case of the dress-up graph:

V1 = {L Sock, R Sock, Pants, Shirt}
V2 = {L Shoe, R Shoe, Belt, Jacket}
V3 = {Scarf, Hat}
V4 = {Overcoat}

Lecture 14: Digraphs and DAGs 11

This shows that if c is the size of the largest chain, then we can partition V (G) into c
antichains, and no fewer.

Note: We knew that we need at most five helpers, but our construction gives a parallel
schedule that we can implement using only four helpers instead of five! The size of the
largest antichain gives an upper bound on the number of helpers we need for any parallel
schedule, but we may be able to get away with fewer. Note also that this greedy approach
schedules every task as soon as possible, but it doesn’t necessarily use the fewest possible
number of helpers. In fact, there is a schedule with four steps and only three helpers:

V1 = {L Sock, Pants, Shirt}
V2 = {L Shoe, R Sock, Jacket}
V3 = {R Shoe, Belt, Scarf}
V4 = {Overcoat, Hat}

Can we use fewer helpers and still get a 4-step schedule? No, because we have 11 items of
clothing, but 2 helpers can only handle 8 items between them in 4 steps.

2.3 Dilworth’s Theorem (fun fact, but not examined)

Theorem 5. For every threshold t > 0, every DAG on n vertices has a chain of size > t or
an antichain of size ≥ n/t.

Proof. Let G be a DAG on n vertices, and let t > 0. Assume for sake of contradiction that
the biggest chain (critical path) has size (vertex count) c ≤ t, and the biggest antichain has
size ℓ < n/t. We know that we can partition the vertex set by depth. This gives a partition
into c antichains. Each of these c antichains has fewer than ℓ vertices. In total, they have
fewer than cℓ < t · n/t = n vertices. Contradiction!

Dilworth’s Theorem says that there is always a large chain or a large antichain. Often, we
use the threshold t =

√
n.

Corollary 6. Every DAG on n vertices has a chain of size >
√
n or an antichain of size

≥
√
n.

MIT OpenCourseWare
https://ocw.mit.edu

6.1200J Mathematics for Computer Science
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Directed analogs of all our defs/theorems
	Degree
	Walks
	Cycles
	Connectivity
	Euler Tours
	Condensation Graphs

	DAGs
	Topological Orders
	Parallel Task Scheduling
	Dilworth's Theorem (fun fact, but not examined)

	cover.pdf
	Blank Page

