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Lecture 18: Introduction to Probability 

1 Probability 

One of the most important disciplines in all of the sciences 

• Randomized Algorithms (Miller-Rabin, 6.1210, 6.1220, 6.5220) 

• Game Theory 

• Information Theory 

• Signal Processing 

• Cryptography 

• Machine Learning 

• Medicine 

• Statistics 

• Forensics 

Also one of the least understood 

• Mark Twain: “There are three kinds of lies: lies, damned lies, and statistics.” 

• “Common sense” demonstrably unreliable 

• Many graduate students don’t know where to start thinking about a probability ques-
tion 

• Many garbage papers based entirely on fundamental misunderstandings of probability 

• Even colleagues in CS who are pretty uncomfortable with probability and statistics 

• Monty Hall Problem 

Solution? Throw away intuition, and simply fall back to rigorous, step-by-step analysis. 
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2 Monty Hall Problem 

Let’s examine an illustrative example. In 1990, Parade Magazine columnist Marilyn vos 
Savant received the following letter from one Craig Whitaker: 

Suppose you’re on a game show, and you’re given the choice of three doors. 
Behind one door is a car, behind the others, goats. You pick a door, say number 
1, and the host, who knows what’s behind the doors, opens another door, say 
number 3, which has a goat. He says to you, “Do you want to pick door number 
2?” Is it to your advantage to switch your choice of doors? 

Marilyn replied that it is indeed advantageous to switch; if the car is behind the originally 
picked door, then you lose by switching, but if it’s not (which is twice as likely), then you 
win by switching. She soon received a torrent of hate mail, including from professional 
mathematicians, adamantly asserting that she was wrong. The hypo described became 
known as the Monty Hall Problem, after the host of the game show Let’s Make a Deal, in 
which contestants faced very similar situations. 

3 The Tree Method 

We will solve the Monty Hall Problem using the Tree Method, a simple, elementary, and 
rigorous approach that doesn’t rely on intuition! 

Step 0: The Question 

Before we can even think about solving a mathematical problem, we need to make sure 
we really understand the setup and what exactly we’re trying to ask. Craig’s letter is not 
entirely precise, so we need to make some clarifying assumptions. We will assume: 

• The prize is equally likely to be behind any one of three doors: A, B, or C. 

• Marilyn is equally likely to pick any of the three doors, regardless of the prize’s location. 

• After Marilyn picks a door, Monty must open an unpicked door with a zonk (non-prize) 
behind it, and ofer Marilyn the option to stay with the originally picked door or switch 
to the other unopened door. 

• If Monty has a choice of two unpicked doors with zonks behind them, he is equally 
likely to open either door. 

Note that these are axioms ; if you accept them, then you must also accept whatever conclu-
sions we reach, but there are perfectly reasonable axioms that lead to diferent conclusions! 
At one extreme, a possible axiom is that Monty is tricksy and only ofers the option to 



3 Lecture 18: Introduction to Probability 

switch if Marilyn originally picked the prize, in which case switching always loses. At the 
other extreme, another possible axiom is that Monty is benevolent and only ofers the option 
to switch if Marilyn originally picked a zonk, in which case switching always wins. 

With our axioms, we can now pose the precise mathematical question: “What is the 
probability that Marilyn (who accepts the ofer to switch) wins the prize?” 

Step 1: The Sample Space 

A probability problem models some kind of random process, experiment, or game. Under-
lying every probability problem is a probability space, which consists of a sample space and 
a probability function. 

Defnition 1. A discrete probability space is a pair (S, Pr), where: 

• S is a non-empty countable set, called the (discrete) sample space, and 

X 
• Pr : S → [0, 1] is a total function with Pr[ω] = 1, called the probability function. 

ω∈S 

Defnition 2. An element ω ∈ S is called an outcome. 

Our frst objective is to identify the relevant sample space using a Tree Diagram. (We will 
ignore the probability function for the moment, but we will return to it later.) Each level of 
the Tree Diagram models a step of the random process, and it will branch to represent the 
diferent possible results of that step. (Recall Counting by Recipe!) In the case of Monty 
Hall, there are three steps: 

• Monty hides a prize behind one door 

• Marilyn picks a door 

• Monty opens an unpicked door to reveal a zonk 

The frst step could result in a prize behind door A, behind door B, or behind door C, so 
the frst level of the Tree Diagram looks like the following: 
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Prize location 

B 

A 

C 

At the second step, the player can pick any of the three doors, so each branch of the tree 
must branch three times. 

Prize location Picked door 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 
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Finally, Monty opens a door that doesn’t match either of the previous two results. This 
could be a choice between either one or two doors, depending on whether the previous results 
were the same. 

Prize location Picked door 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

Opened door 

B 

C 

C 

B 

C 

A 

C 

A 

B 

A 

A 

B 

ω 

(A, A, B) 

(A, A, C) 

(A, B, C) 

(A, C, B) 

(B, A, C) 

(B, B, A) 

(B, B, C) 

(B, C, A) 

(C, A, B) 

(C, B, A) 

(C, C, A) 

(C, C, B) 

If we start at the root (source), and we follow edges based on the result of each step, then 
the leaf (sink) we reach (or equivalently, the path we follow) will tell us everything we need 
to know about how the random process turned out. Each leaf (sink) in our Tree Diagram is 
therefore an outcome, and the sample space is the set of leaves! In the case of Monty Hall, 
the top leaf represents the outcome where the prize is behind door A, Marilyn picks A, and 
Monty reveals a zonk behind B. 

We can represent our sample space concisely as {(x, y, z) ∈ {A, B, C}3 : z ̸= x ∧ z ̸= y}. 

Step 2: The Probability Function 

Now that we have our sample space, we must compute our probability function. To do this, 
we will assign a probability to each edge in our Tree Diagram. If we have a probability p 
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on edge (u, v), that means that assuming we have already reached u, we proceed to v with 
probability p. The probabilities of the edges leaving u should always sum to 1, and they 
should all be immediate from the process being modeled. (If they are not immediate, you 
may want to restructure your Tree Diagram! E.g., if the frst level of the tree were the door 
opened instead of the prize location, the probabilities wouldn’t be immediately obvious.) 

For Monty Hall: 

• Edges in leftmost layer have probability 1/3. 

• Edges in middle layer have probability 1/3. 

• Edges in rightmost layer have probability 1 or 1/2, depending on whether Monty had 
one or two choices. 

For an outcome ω, the probability Pr[ω] is the product of the probabilities along the path 
from the root to ω. This will be justifed more formally in Lecture 19. 

Prize location Picked door Opened door ω Pr[ω] 

B 1/2 (A, A, B) 1/18 

(A, A, C) 1/18 

(A, B, C) 1/9 

(A, C, B) 1/9 

(B, A, C) 1/9 

(B, B, A) 1/18 

(B, B, C) 1/18 

(B, C, A) 1/9 

(C, A, B) 1/9 

(C, B, A) 1/9
B 1/3 A 1 

A 1/2 (C, C, A) 1/18 
C 1/3 

B 1/2 (C, C, B) 1/18 

A 1/3 

B 1/3 

C 1/3 

A 1/3 

B 1/3 

C 1/3 

A 1/3 

B 1/3 

B 1 

C 1/3 

A 1/3 

C 1/2 

C 1 

C 1 

A 1/2 

C 1/2 

A 1 

B 1 
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Step 3: The Events 

Defnition 3. A subset A ⊆ S is called an event. 

Examples: 

• {(A, B, C), (A, C, B), (B, A, C), (B, C, A), (C, A, B), (C, B, A)} is the event [Marilyn wins] 

• {(A, A, C), (A, B, C), (B, A, C), (B, B, C)} is the event [Monty opens door C] 

• {(A, A, B), (A, A, C), (A, B, C), (A, C, B)} is the event [the prize is behind door A] 

Note the use of the notation [X] to mean “the event (set of outcomes) in which X occurs”. 

Step 4: The Answer 

Defnition 4. We extend the probability function Pr to events: for an event A, we defne 
the probability of A as X 

Pr[A] := Pr[ω] 
ω∈A 

We know the probabilities of each outcome, so we can compute the probabilities of events! 
In this case, each of the six outcomes in the event [Marilyn wins] occurs with probability 1/9, 
so Pr[Marilyn wins] = 6/9 = 2/3. Marilyn was correct! No intuition, no ingenious analogy, 
no fuss, no mess, just arithmetic over Q. Hardest part: resisting temptation to jump to an 
“obvious” conclusion. 

4 Strange Dice 

Suppose we have three strange dice: 

Consider the following game: 

• Player 1 picks a die. 
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• Player 2 picks a diferent die (after seeing Player 1 pick). 

• Both players roll their chosen die. 

• Higher number wins. 

Who should win? 

4.1 Red vs. Green 

Let’s draw the Tree Diagram! 

ω 

(2, 1) 

(2, 5) 

(2, 9) 

(6, 1) 

(6, 5) 

(6, 9) 

(7, 1) 

(7, 5) 

(7, 9) 

2 1/3 

6 1/3 

7 1/3 

1 1/3 

5 1/3 

9 1/3 

1 1/3 

5 1/3 

9 1/3 

1 1/3 

5 1/3 

9 1/3 

S = {2, 6, 7} × {1, 5, 9}. Each outcome is a pair of die rolls (r, g) where r is the red result 
and g is the green result. Each die has 1/3 probability of showing each possible number, 
regardless of the other die roll. Therefore, every edge has probability 1/3, and every outcome 
has probability 1/9. 

Defnition 5. A probability space (S, Pr) is uniform if Pr is the constant function. 

Uniform probability spaces are especially nice, because computing probabilities simply 
means counting outcomes! The event [Red wins] is {(2, 1), (6, 1), (6, 5), (7, 1), (7, 5)}, with 5 
outcomes. There are 9 outcomes in total, so Pr[Red wins] = 5/9. 
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4.2 Green vs. Blue 

1 1/3 

5 1/3 

9 1/3 

3 1/3 

4 1/3 

8 1/3 

3 1/3 

4 1/3 

8 1/3 

3 1/3 

4 1/3 

8 1/3 

ω 

(1, 3) 

(1, 4) 

(1, 8) 

(5, 3) 

(5, 4) 

(5, 8) 

(9, 3) 

(9, 4) 

(9, 8) 

The event [Green wins] is {(5, 3), (5, 4), (9, 3), (9, 4), (9, 8)}, with 5 outcomes. We again have 
a uniform space with 9 outcomes in total, so Pr[Green wins] = 5/9. 

4.3 Blue vs. Red 

If Red beats Green and Green beats Blue, then Red must beat Blue, right? NO! 
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ω 

(3, 2) 

(3, 6) 

(3, 7) 

(4, 2) 

(4, 6) 

(4, 7) 

(8, 2) 

(8, 6) 

(8, 7) 

3 1/3 

4 1/3 

8 1/3 

2 1/3 

6 1/3 

7 1/3 

2 1/3 

6 1/3 

7 1/3 

2 1/3 

6 1/3 

7 1/3 

This time, Blue wins with probability 5/9. It may be counterintuitive that Red beats Green 
with probability 5/9, Green beats Blue with probability 5/9, and Blue beats Red with 
probability 5/9. However, there’s no reason that this “beats” relation should be transitive; 
it’s just faulty intuition! 

So Player 2 should win with probability 5/9; regardless of which die Player 1 chooses, 
Player 2 can counter it. 

But wait; it gets even weirder... 

4.4 Red 2.0 vs. Green 2.0 

Suppose each player rolls their chosen die twice, and whoever has the higher sum wins. This 
time, we have a uniform probability space with 81 outcomes, so the Tree Diagram will be 
rather cumbersome to draw in its entirety. Instead, we’ll look for a pattern and abbreviate. 
We’ll also omit the probabilities, since we’ve already established that we have a uniform 
probability space. 
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First Second Sum First Second Sum 

2 

6 

7 

2 

6 6 

7 

7 

2 

4 

8 

9 

8 

12 

13 

92 

6 13 

7 14 

1 

5 

9 

1 

5 5 

9 

9 

1 

2 

6 

10 

6 

10 

14 

101 

5 14 

9 18 

After rolling the red die twice, we reach one of the nine red vertices labeled with the sum 
of the two rolls. Each such vertex is the root of a subtree identical to the green one drawn. 
An outcome therefore combines a leaf of the red subtree with a leaf of the green one. How 
many outcomes are in the event [Red wins]? There is 1 in the topmost subtree (4 > 2). 
There are 3 in the second subtree (8 > 6 for two outcomes, and 8 > 2 for one). We similarly 
count 3 in the third, fourth, and seventh subtrees and 6 in the ffth, sixth, eighth, and ninth 
subtrees. This gives a total of 1+3+3+3+6+6+3+6+6 = 37 outcomes. The event [Red 
loses] contains 8 + 6 + 6 + 6 + 3 + 3 + 6 + 3 + 1 = 42 outcomes. The event [Draw] contains the 
remaining 2 outcomes. We conclude that Pr[Red wins] = 37/81, and Pr[Red loses] = 42/81. 
With one roll, Red beats Green more often than not, but with two rolls, Green beats Red 
more often than not! 

In fact, if we roll twice, the dice continue to be intransitive, but the order reverses! For 
more fun with Intransitive Dice, see https://arxiv.org/abs/1311.6511. 

https://arxiv.org/abs/1311.6511
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