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Lecture 24: Large Deviations: Chebyshev and

Chernoff Bound, Wrap up.

Readings: Chapter 20.

1 Announcements

• Schedule: Lecture today, no rec tomorrow (instead review sessions in 32-124), final
exam Friday

• Final Exam, and Review Materials (see announcement)

2 Review: Variance

Let’s start with the definition of variance from the last lecture.

Definition 1. Variance of R is

Var [R] = Ex
[
(R− Ex [R])2

]
Standard deviation of R, denoted σ(R), is the (positive) square root of the variance.

Another way to compute the variance:

Theorem 1.
Var [R] = Ex

[
R2
]
− Ex [R]2

Proof. (Skip; proved in recitation.)

Var [R] = Ex
[
(R− Ex [R])2

]
= Ex

[
R2 − 2 · Ex [R] ·R + Ex [R]2

]
= Ex

[
R2
]
− 2 · Ex [R] · Ex [R] + Ex [R]2

= Ex
[
R2
]
− Ex [R]2

Theorem 2. If R1, . . . , Rn are pairwise independent random variables, then

Var [R1 + . . .+Rn] = Var [R1] + . . .+Var [Rn]
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Proof. (Skip; proved in recitation.)

Var

[
n∑

i=1

Ri

]
= Ex

( n∑
i=1

Ri

)2
−

(
Ex

[
n∑

i=1

Ri

])2

= Ex

[
n∑

i=1

R2
i + 2 ·

∑
i̸=j

RiRj

]
−

n∑
i=1

Ex [Ri]
2 − 2

∑
i̸=j

Ex [Ri] Ex [Rj]

=
n∑

i=1

(
Ex
[
R2

i

]
− Ex [Ri]

2)+∑
i̸=j

(Ex [RiRj]− Ex [Ri] Ex [Rj])

Since for every i ̸= j, the r.v.s Ri and Rj are independent, Ex [RiRj] = Ex [Ri] Ex [Rj], so
the second term above vanishes. The first term is just the sum of the variances of all the Ri,
so there you go.

Warning: σ(R1 + R2) is not necessarily σ(R1) + σ(R2) even when R1 and R2 are inde-
pendent. But the theorem above tells us that σ(R1 + R2)

2 = σ(R1)
2 + σ(R2)

2, when they
are independent.

3 Large Deviation Bounds

Theorem 3 (Markov’s Inequality). Let R be a non-negative random variable. Then,

Pr [R ≥ x] ≤ Ex [R]

x

Example: Let R be the weight of a random person. Say Ex [R] = 100. What is the
probability that R ≥ 200?

Answer: We don’t have enough information to compute the exact probability, but Markov
tells us that this is at most 100/200 = 1/2.

There is a definite, non-probabilistic, interpretation of this statement: at most half the
population weighs at least 200 lbs. There is nothing probabilistic about that.

Proof of Markov’s Inequality.

Ex [R] = Ex [R | R ≥ x] Pr [R ≥ x] + Ex [R | R < x] Pr [R < x]

by the law of total probabilities applied to expectation. the first expectation term on the
RHS is at least x and the second expectation term on the RHS is at least 0 (this is where
we are using non-negativity of R.) So,

Ex [R] ≥ x · Pr [R ≥ x] + 0 · Pr [R < x] ≥ x · Pr [R ≥ x]
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Rearranging the terms, we get

Pr [R ≥ x] ≤ Ex [R]

x

An alternate form of Markov:

Theorem 4 (Markov’s Inequality, alternate form). Let R be a non-negative random vari-
able. Then

Pr [R ≥ c · Ex [R]] ≤ 1

c

3.1 Useful strategy: adjusting bounds

Say R is test scores, always between 30% and 100%. Say average grade is 75%. Can we use
Markov to bound the probability of getting at least 90%?

Pr [R ≥ 90] ≤ Ex [R]

90
= 75/90 ≈ .833

Can get a better bound by noticing that R − 30 is a nonnegative random variable!
Pr [R ≥ 90] = Pr [R− 30 ≥ 60] (why?1), which by Markov applied to random variable R−30
is ≤ Ex [R− 30] /60 = 45/60 ≈ .75.

What about probability that R ≤ 65? Markov is usually for R ≥ k, not R ≤ k. But since
we know an upper bound for R, we can instead look at 100−R, which is nonnegative! Then
Pr [R ≤ 65] = Pr [100−R ≥ 35] ≤ Ex [100−R] /35 = 25/35 ≈ 0.714. We can use Markov
since we know an upper bound for R.

In general, if we know S ≥ ℓ, try applying Markov to S − ℓ. If we know S ≤ u, try
applying Markov to u− S to bound the probability that S is at most something.

This includes some cases where the random variable might be negative: If we know
S ≥ −4, we can’t apply Markov to S because S isn’t nonnegative, but S +4 is nonnegative,
so Markov can be used.

3.2 Why does Markov need non-negativity anyway?

Here is a counterexample: consider R which takes on the value −1 if an unbiased coin comes
up heads and +1 if it comes up tails. Ex [R] = 0. Pr [R ≥ 1/2] = 1/2 but (**incorrectly!**)
applying Markov would have us conclude this is at most 0.

Looking at the proof of Markov above tells us where things go wrong if R is not non-
negative. We used that Ex [R | R < x] is at least 0 appealing to the non-negativity of R.

1[R ≥ 90] and [R− 30 ≥ 60] are exactly the same event



4 Lecture 24: Large Deviations: Chebyshev and Chernoff Bound, Wrap up.

3.3 Markov is (often) not tight

Let’s look at the cellphone check problem, from L22/23, starting from the lazy suzan version.
Recall: n people sit around a table, place their cellphones on a lazy suzan and give it a spin.
If R is the number of people who got their cellphones back, then we saw that Ex [R] = 1.
What is the probability that all n get their cellphone back?

Markov has an answer. It is ≤ Ex [R] /n = 1/n. What’s the true answer? Also 1/n.

Let’s look at the original version of the cellphone check problem, where the n phones are
permuted and returned. What is the probability that all n get their cellphone back?

Markov has the same answer! It is ≤ Ex [R] /n = 1/n. What’s the true answer? It is
1/(n!). n! ≫ n, so Markov is way off in the estimate here. The *upper bound* that Markov
gives us is *correct* but is *loose*. The true probability is much smaller.

What if we want tighter bounds? For that, we need to know something more about the
probability distribution than just its mean.

3.4 A Recurring Example

Example: Let’s look at the number of heads in a toss of n coins. Here,

R = R1 + . . .+Rn

where Ri is the indicator random variable which is 1 if and only if the i-th coin toss came
up heads.

Ex [Ri] = 1/2 and Var [Ri] = Ex
[
R2

i

]
− Ex [Ri]

2 = 1/2− 1/4 = 1/4

Now,

Ex [R] =
n∑

i=1

Ex [Ri] = n/2

and

Var [R] =
n∑

i=1

Var [Ri] = n/4

σ(R) =
√

n/4 =
√
n/2

(We will see later in the lecture that this number
√
n has a special meaning: there is a

good chance that you won’t see the number of heads in n coin tosses falling outside the range
[n
2
− c

√
n, n

2
+ c

√
n] for large enough constants c > 0. The number of heads is “concentrated

around n/2”.)

Markov tells us that

Pr [R ≥ 3n/4] ≤ Ex [R] /(3n/4) = (n/2)/(3n/4) = 2/3

We’ll do much better later.
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4 Chebyshev

Theorem 5 (Chebyshev’s Inequality). For every x > 0 and for every r.v. R (not necessarily
non-negative),

Pr [|R− Ex [R] | ≥ x] ≤ Var [R]

x2
=

(
σ(R)

x

)2

where σ(R) is the standard deviation of R.

This bears repeating: R can be any random variable! It doesn’t have to be nonnegative
anymore.

Proof. Use Markov! With the (non-negative) random variable (R−Ex [R])2. Now, and make
sure you understand this step,

Pr [|R− Ex [R] | ≥ x] = Pr
[
(R− Ex [R])2 ≥ x2

]
Now apply Markov and get

Pr [|R− Ex [R] | ≥ x] = Pr
[
(R− Ex [R])2 ≥ x2

]
≤ Ex [(R− Ex [R])2]

x2
=

Var [R]

x2

Theorem 6. For every x > 0 and for every r.v. R (not necessarily non-negative),

Pr [|R− Ex [R] | ≥ c · σ(R)] ≤ 1

c2

where σ(R) is the standard deviation of R.

Example 1: Let’s go back to the test scores whose variance is, say 25 (so the standard
deviation is 5).

Pr [score ≤ 65] ≤ Pr [|score− 75| ≥ 10]

Why? The latter probability measures the union of two events — that score ≤ 65 and that
score ≥ 85.

Apply Chebyshev:

Pr [|score− 75| ≥ 10] ≤ Var [score]

102
=

25

100
= .25

Equivalently, we’re asking about the probability of being at least c = 2 standard deviations
away from the mean, which Chebyshev shows has probability at most 1/c2 = 1/4. This is a
much better bound than we got using Markov alone!

Example 2: Back to number of heads in n coin flips. Chebyshev tells us that

Pr [R ≥ 3n/4] ≤ Pr [|R− n/2| ≥ n/4] ≤ Var [R]

(n/4)2
=

(n/4)

(n/4)2
=

4

n

which is a far better bound.
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5 Chernoff

It turns out there is something even better that one can do. Recall that Chebyshev only
uses the pairwise independence of the coin tosses. Using the *mutual* independence of all
the coin tosses gives us a better bound via the Chernoff bound.

Theorem 7 (Chernoff). Let Let T1, . . . , Tn be mutually independent random variables such
that 0 ≤ Ti ≤ 1 for all i. Let T = T1 + T2 + . . .+ Tn. Then, for all c ≥ 1,

Pr [T ≥ c · Ex [T ]] ≤ e−(c ln c−c+1)·Ex[T ]

The proof, like that of Chebyshev, uses Markov on a different random variable, namely
cT . For the real proof, I will refer you to the book, section 20.5.6.

Let’s apply Chernoff to the coin tosses. We get, letting c = 3/2,

Pr [R ≥ 3n/4] = Pr [R ≥ 3/2 · n/2] ≤ e−0.1·n/2 = e−n/20

which is an exponentially better bound than Chebyshev!

Letting c = 1 + (4/
√
n), we can prove

Pr
[
R ≥ n

2
+ 2

√
n
]
≤ 0.02

for large n.

Note that
√
n is much smaller than n, so this distribution clumps tighter and tighter

around the mean (proportionally) as n increases. This is one sense in which coin flips are
very concentrated around n/2.

6 The End!

Thanks for a fun semester. Good luck with finals and enjoy your summer!
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