
1 

Object Models 

6.170 Lecture 6 

Fall 2005 

Today we turn to the subject of object models: a diagrammatic notation that allows us to capture 
sets of snapshots. Until now, we’ve had to illustrate the heap configurations of a program by 
showing individual snapshots using object diagrams. Object models are far more powerful, because 
they allow us to describe an infinite set of snapshots all at once. As the term progresses, we’ll make 
more and more use of object models. not only for describing snapshots of programs, but also for 
describing more abstract properties of a problem domain. 

Object Diagrams 

In our last lecture, we used object diagrams to show particular configurations of objects, or ‘snap
shots’. Here is an object diagram showing a snapshot of an Account object and the objects reachable 
from its fields: 

(Vector) (Trans)(Account) transv elts 

(Trans) 

elts 
name 

(String) 

date 

date 

(Date) 

(Date) 

We’re no longer concerned now to explain how assignment and so on works; instead, we’re 
going to focus on structural constraints on object configurations. That’s why the Account object 
isn’t referenced by a variable in the diagram. It’s not that the object is not reachable, but just 
that we’re not concerned about how it’s reached in the code. Note that we’ve also omitted the 
primitive values (the balance field of Account and the amount field of Trans), since we’re primarily 
concerned about objects and their relationships. 

Often, we’ll want to elide collection objects such as the vector and only show the more interesting 
user-defined objects. The Vector is part of the representation of the Account object, and a client 
that calls the methods of Account sees only a Trans and not the Vector itself. So we might draw 
this diagram: 

1




(Trans)(Account) 

(Trans)
name 

(String) 

date 

date 

(Date) 

(Date) 

trans 

trans 

in which the abstract field arrow labelled trans from the Account object to the Trans object 
hides the Vector. This isn’t actually new; we did the same thing with Vector itself, not showing 
that it was implemented with an array. 

Many states can be created using these classes, but not all of them will be desirable. Here are 
two bad states. In the first, two Account objects share a name; this will mean that names cannot 
be used as unique identifiers: 

(Account) 

(Account) name 

name 

(String) 

In the second, a transaction belongs to two accounts:


(String) 

(String) 

(Trans) 
date 

(Date) 

name 

name 

(Account) 

(Account) trans 

trans 

Whether these are in fact problematic depends on the intent of the designer of these classes, 
and the properties of the problem domain. For example, a transaction may be shared between 
two accounts if it represents a transfer; two accounts may share the same name if there is some 
other way to identify the accounts; it may cause no problems for two transactions to be recorded 
as occurring simultaneously. 

So we cannot say for sure whether these configurations are right or wrong. What’s important 
is to understand that such constraints do arise in practice, and you need a way to record them. 

2




2 

The crucial point is that the code itself does not indicate how it is to be used, so in addition to 
succinctly summarizing some code features (such as which classes and fields there are), the object 
model adds constraints about potential clients of the code. 

In these diagrams, we’ve omitted the variable bindings and the primitive values, which are less 
relevant than the objects. It will often be convenient to draw object diagrams and object models 
that correspond to only part of the state, and sometimes we will even omit objects. 

Sometimes we will want to talk about the representations of objects, and for these we will not 
want to elide intermediate objects, such as the vector. The diagram below shows a problematic 
state that might arise. This may be created by clients of the code we have seen, but should not be. 

(Account) 

(Account) transv 

transv 

(Vector) 

If two Account objects share a vector, an execution of the post method on one will cause a 
transaction to to be added to the vector (see Lecture 3), but the balance of only one of the accounts 
to be updated. This will violate a representation invariant that the balance should always be the 
sum of the amounts of the transactions in the vector. Later, we will describe this problem as a 
representation exposure, in which part of the representation of an Account object – its vector – 
has leaked out, and become accessible from the outside, thus compromising the invariant. 

Object Model Basics 

We’ve drawn lots of object diagrams showing various configurations. When we want to talk about 
a program and the configurations that can arise, it would be tedious if we had to draw object 
diagrams to illustrate different cases. So instead we’ll draw object models. An object model is 
related to an object diagram the way a grammar is related to a sentence: while an object diagram 
denotes a single snapshot, an object model denotes a set of snapshots, usually infinite. 

Here’s an object model that corresponds to our class Account, whose code appears in Lecture 
3: 

String 

transv elts 
Account Vector Trans 

Date 

datename 

Each box corresponds to a class: it represents the set of all objects that belong to that class (in 
some given state). The arrows are relations, sometimes called associations, and they represent the 

3




fields that connect classes. For example, the arrow labelled transv from Account to Vector shows 
that each object of the Account class has a field whose value is a Vector object. 

The object model specifies a set of object diagrams, by imposing the constraint that each object 
in the diagram belong to one of the object model boxes, and that any field arrow in the object 
diagram connect objects from the appropriate boxes. So our object model allows, for example, this 
state: 

(Vector) (Trans)(Account) transv elts 

but not this state:


(Account) date (Date) 

Note that the object model (at least without multiplicity constraints, which we’ll talk about 
below) can’t require that any object or field be present; it says what cannot be present. The model 
above places no constraints on the relative numbers of objects, so it admits crazy states such as: 

(Vector) (Trans)(Account) transv elts date 
(Date) 

(Date) 

date 

which the code clearly rules out. 
In the same way that we abstracted away Vectors in the object diagram, we can abstract away 

the Vector class in the object model: 

String 

Trans 

Date 

date 

Account 

name 

trans 

Multiplicity 

Our object model doesn’t constrain how many objects there are of each class in relation to one 
another. For example, we might want to say that an Account can have several Trans objects, but 
a Trans can have only one Date. Multiplicity annotations let us do this. 

The multiplicity symbols are: 

4 

3 



•	 * (zero or more); 

•	 + (one or more); 

•	 ? (zero or one); and 

•	 ! (exactly one). 

When a symbol is omitted, * is the default (which says nothing). The interpretation of these 
markings is that when there is a marking n at the B end of a relation R from class A to class B, 
there are n objects of class B associated by R with each A. It works the other way round too; if 
there is a marking m at the A end of a relation R from A to B, each B is mapped to by m objects of 
class A. 

Now we can add multiplicity constraints to our model: 

String 

transv elts 
Account Vector Trans 

Date 

datename 
? 

? 

? 

! 

! 

! 

Let’s look at each of the multiplicity symbols and see what it tells us. We’ll start with those on 
the target ends, because they’re easier to understand: 

•	 Account to Vector. The ! on the head of the arrow from Account to Vector tells us that in 
any legal state, there is exactly one Vector object associated with each Account object. In 
other words, the transv field is never null. 

•	 Vector to Trans. The lack of a symbol, equivalent to *, tells us that there are zero or more 
Trans objects in the Vector. 

•	 Trans to Date. The ! tells us that the date field of Trans is non-null. 

Now let’s consider the symbols on the sources of the arrows: 

•	 Account to Vector. The ? on the tail of the arrow from Account to Vector tells us that each 
of these Vector objects is associated with at most one Account object. That is, Account 
objects don’t share Vectors: two different Account objects must have different transv fields. 

•	 Vector to Trans. The lack of a symbol says that each Trans may belongs to any number of 
Vectors, so even though each Vector belongs to at most one Account, a Trans may be shared 
between accounts. 

•	 Trans to Date. The lack of a symbol would mean that two Trans objects may share the same 
Date. Since there is a ?, each Date object is associated with at most one Trans object. 

5 



4 

Some multiplicity constraints can be enforced in a straightforward way in the code. A Trans 
object will certainly have at most one date, for example, because the field can hold at most one, 
and by making it private, constructing a Trans with a date that is checked to be non-null, and by 
allowing no subsequent mutations, we can ensure that the date field is non-null. 

Others are much harder to enforce, and may require constraints on the clients of these classes. 
For example, we might decide that no two Trans objects can occur at exactly the same moment, 
so that we can always say of two Trans objects which is earlier. We express this by placing a ? on 
the source end of the date arrow from Trans to Date. Similarly, we might want Account objects to 
be uniquely identified by their name fields. In both cases, these constraints cannot be conveniently 
enforced within the classes themselves. Instead, we will ensure that they hold by careful design of 
collaborations amongst objects. 

Mutability 

An object model can also show mutability information: how the relationships between objects are 
allowed to change. We expect transactions to be added to an account, but we don’t expect the 
vector holding the transactions to be replaced. This can be shown in the object model by marking 
the end of the arrow from Account to Vector with a small hatch: 

Account transv 
Vector 

This means that the Vector associated with a given Account is fixed over the lifetime of that 
Account: it’s set on creation (in the constructor) and not changed subsequently. Of course, the 
contents of the vector can change: those are determined by the arrow from Vector to Trans instead. 

When the target end of a relation is hatched, the relation is said to be target static. The decision 
to make transv target static is a fundamental one about how the Account class is implemented. 
Since vectors are extensible, there’s no need to replace the vector once allocated. But if we’d used 
an array instead, we would have had to replace it when it could no longer hold as many transactions 
as required. In that case, the relation from Account to Array would certainly not be target static: 

Account Array
transa 

Should the name relation from Account to String be target static too? There’s nothing in 
the code of Account that prevents the name from being changed, but it seems like a reasonable 
constraint to impose. 

Relations can be source static too. We can put a hatch on the left end of the arrow from 
Account to Trans, like this: 

Account transv 
Vector 

This would say that which Account is associated with a given Vector does not change over the 
lifetime of the Vector. This is subtly different from the constraint implied by the hatch on the other 

6




5 

6 

end of the arrow: it means that if an account object is no longer used (and subsequently garbage 
collected by the Java runtime environment), the vector cannot be reused. Our implementation (see 
Lecture 3) satisifies this, since the constructor always creates a fresh vector rather than reusing an 
old one. 

Subclassing in the Object Model 

We can draw an object model that includes the relationship between Account and AccountPlus. 
A closed arrowhead from A to B says that every A is a B, or that the set of objects denoted by A is 
a subset of the set denoted by B. This can arise either because A is a subclass of B, or because A 
implements the interface B (more on that later). 

String 

transv elts 
Account Vector Trans 

Date 

date 
name 

AccountPlus 

Because every AccountPlus is an Account, the field from Account to Trans also implicitly asso
ciates AccountPlus objects with Trans objects. So the model allows states in which AccountPlus 
objects have trans fields. Likewise, the multiplicity constraints are ‘inherited’. If we have a con
straint that says that no two Account objects can share a Trans, then this will mean that no two 
AccountPlus objects can either, nor an Account object and an AccountPlus object. 

In a more elaborate system, we might subclass Trans too: This object model shows that 
different subclasses may have different fields. Transfer transactions hold a reference to the other 
Account; Fee transactions may point to another transaction for which the fee was charged; Regular 
transactions have neither. The filled in arrowhead indicates that in this case the subsets exhaust 
the superset: namely that every transaction belongs to one of the subclasses. In implementation 
terms, this will imply that Trans is an interface or an abstract class. 

Conclusion 

The obejct model notation is a simple but surprisingly powerful one. We have seen how an object 
model can help bridge the gap between the problem domain and the program: we can articulate 
in the object model, for example, very directly and succinctly, that the name of an account should 
be a unique identifier, or that transactions should not be simultaneous. These properties can be 
quite subtle when we consider how they are enforced in the code. the object model describes global 
properties of the state; the tricky task that faces us is to establish these properties locally, within 
the appropriate class. 

7



