
1 

Object Semantics 

6.170 Lecture 2 

The objectives of this lecture are to: 

•	 to help you become familiar with the basic runtime mechanism common to all object-oriented 
languages (but with a particular focus on Java): variables, object references, assignments, 
mutability, and so on; 

•	 to introduce a diagrammatic notation, object diagrams for describing ‘snapshots’ (that is, 
particular configurations of objects in the heap);1 

•	 to make you aware, in passing, of some tricky issues that we’ll return to later in more detail, 
and which turn out to be of fundamental importance: equality, rep invariants and exposure. 

When you’ve completed this material, you should have a solid grasp of what happens when 
Java code executes, so that you can predict what some code will do without running it. 

Variables, References and Objects 

Some types of objects can be created with literals. What happens when you run this? 

1. String a = "zeeb"; 
2. String b = a.toUpperCase (); 
3. System.out.println (b); 

It prints ZEEB. Statement 2 is a call to the method toUpperCase. The method has a ‘receiver’ 
a.	 The call results in the creation of a fresh string that is then bound to the variable b . 

We can draw the result of the first two statements as an object diagram, showing that a is a 
reference to an object of type String (and not the string itself, or a slot that holds it); similarly 
for b. 

"zeeb" 
(String) 

"ZEEB" 
(String) 

b a 

What does this do? 

1. String a = "zeeb"; 
2. a.toUpperCase (); 
3. System.out.println (a); 

Later, we will introduce object models that are far more useful and which describe sets of snapshots. 

1 

1



2 

It prints zeeb. Statement 2 creates a fresh string that gets thrown away since it is bound to no 
variable. The string object referenced by a is not changed: strings are immutable. 

What about this? 

String a = "zeeb";

a = a.toUpperCase ();

System.out.println (a);


Again, no object changes. But a is made to refer to the new object by the assignment in 
Statement 2, so the result is ZEEB. 

"ZEEB" 
(String) 

"zeeb" 
(String) 

a a 

Aliasing, Mutability and Reference Equality 

Java provides a variety of collections as part of its standard library. A vector is like an array, but 
it can grow and shrink dynamically. An example of using a vector: 

1. Vector v = new Vector (); 
2. Vector k = v; 
3. String a = "zeeb"; 
4. v.add (a); 
5. k.add (a.toUpperCase()); 
6. System.out.println (v.lastElement ()); 

The method lastElement is like the string method toUpperCase: it has no effect on the receiver 
and returns a reference to an object (in this case, the last element of the vector v). The method 
add, on the other hand, takes an argument the string a. Unlike toUpperCase, the method add 
does not return an object, but changes or mutates its receiver object. Vectors, unlike strings, can 
change, and are thus said to be mutable. 

The code above prints ZEEB, since after Statement 2 the two variables k and v are names for 
the same vector object: they are said to be aliases. The calls to add mutate the one vector object, 
first adding the object for the lower case string, then the upper case string. The changes are visible 
through both names, so in Statements 4 to 6 we could actually permute the names k and v without 
any change in behavior. 

Here is the object diagram: 

(String) 

v k 

"zeeb" 
(String) 
"ZEEB" 

(Vector) elts[0] 

elts[1] 

a 

2 



Aliasing is pervasive in languages like Java, and very useful. But it adds a lot of complexity. 
For one thing, it breaks the rule that a statement ‘affects only the variables it mentions’. Just 
because v isn’t mentioned in Statement 5 doesn’t mean that it won’t affect the result of statement 
6 which mentions only v and not k. 

How can we observe the aliasing more directly? By testing equality: 

Vector v = new Vector (); 
Vector k = v; 
if (v == k) 

System.out.println ("same");

else


System.out.println ("different");


which results in same being printed. The built-in == test tells you whether two references are 
for the same object, so it’s often called a test of ‘reference equality’. 

What does this do? 

Vector v = new Vector (); 
Vector k = new Vector (); 
if (v == k) 

System.out.println ("same");

else


System.out.println ("different");


It prints different, because v and k are distinct objects. It’s a fundamental property of 
constructors that the objects they return really are fresh. In fact, the garbage collector can recycle 
an object, but only if there is no reference to it still around. This ensures that even if objects are 
recycled, we can never tell. 

A puzzle: what does this do? 

String a = "zeeb"; 
String b = "zeeb"; 
if (a == b) 

System.out.println ("same");

else


System.out.println ("different");


Strangely, this prints same, because the Java virtual machine automatically ‘interns’ string 
literals: if it can tell that two string literals have the same sequence of characters, it only allocates 
one object. You’d be right to think this is a bit confusing; it’s a performance optimization. 

In fact, it’s very bad form to test reference equality of immutable objects, unless you’re doing 
something subtle with memory management. Arguably it’s a design defect of Java that you can 
even observe whether two immutable objects are the same or not. So how should you compare two 
immutable objects? With an equals method. 

The String class provides a method equals that tells you whether two strings contain the same 
sequence of characters or not. This code 

String a = "zeeb";

String b = a.toUpperCase ();


3 



3 

if (b.equals ("ZEEB"))

System.out.println ("same characters");


else

System.out.println ("different characters");


prints same characters. 
When we study inheritance, you’ll learn that every class automatically inherits an equals 

method, so you might think you don’t need to write one. But it’s almost never what you want, so 
whenever you design a class, one of the first things you’ll need to figure out is when two objects of 
the class should be considered equal to one another. 

Here are some questions: 

•	 Would you expect that generally x == y implies x.equals (y)? Yes, it should. Because the 
equals method can be user-defined, just like any other method, you could make it behave in 
any way you wanted. On a mutable type, it might even mutate the object! But that would be 
disastrous: there’s a generic contract that clients expect equals to obey. More on this later. 

•	 Why would a language have immutable types? Because aliasing is complicated, and when 
you use immutable types, the issue doesn’t arise. Also, code built with immutable types can 
sometimes be more efficient. 

•	 So if immutable types are so much simpler, why have mutable types? Because mutation gives 
a very useful form of modularity: it allows you to make local changes to a structure. And 
mutation is often a natural way to model entities in the real world: a transaction on a bank 
account changes it; it doesn’t produce a new bank account. 

Null References 

What does this do? 

String a = null;

System.out.println (a);


It prints null. The keyword null denotes a value that can be taken on by an object reference. 
It means that the reference does not in fact refer to any object. There is no null object! 

But note that this code 

1. String a = null; 
2. String b = a.toUpperCase (); 
3. System.out.println (b); 

behaves quite differently. It throws a NullPointerException on Statement 2. We’ll learn 
about exceptions later, but for now, all you need to understand is that Statement 2 failed, when 
the expression a.toUpperCase() was evaluated. 

What’s the difference? The receiver to a method call can never be null, because it identifies the 
object that ‘receives’ the call—and that has to be some object. So a.toUpperCase() fails when a 
is null. But in the previous example, System.out.println(a) is OK when a is null, since reference 
is an argument, and this is a special kind of method (really just a plain old procedure) that doesn’t 
have a receiver. 

4 



4 

You can write a method that tests whether an argument is null and does something appropriate. 
Dereferencing null is a common programming mistake in Java. To avoid it, you can check whether 
a reference is null before you attempt to call a method. 

In general, rather than catching nulls and treating them specially, it’s better to avoid creating 
null references in the first place. You’ll learn about that when we discuss representation invariants. 
Sometimes you can’t avoid it, and then it’s important to document where the null references may 
occur. That’s one reason specifications are important: they can spare you runtime errors and 
unnecessary checks. 

Here are some questions: 

•	 In general, would you expect a.equals (b) to be substitutable for b.equals (a) ? No, 
because when a is null and b is not, the first will throw an exception, and the second will 
(usually) return false. 

•	 OK, smarty pants, leave nulls alone. Would you then expect a.equals (b) and b.equals 
(a) to have the same effect? Yes, you would. In fact, this property of the equals method 
– called symmetry – is demanded by Java’s ‘object contract’. We’ll see later when we study 
equality in depth what other properties are required, and how easy it is to mess up and write 
an equals method that does not have these properties. 

User-defined Classes and Fields 

Let’s make some objects of our own: 

class Trans { 
int amount; 
Date date;


}


This code declares a class, a kind of template for making objects. These objects are going to 
represent transactions in a banking system. Each object has an integer amount (which may be 
negative for a withdrawal), and a date/time stamp to mark the moment at which the transaction 
occurred. 

The class declares two fields or instance variables, amount and date. Each object of the class 
will contain two references, one to an integer and one to a date. The type Date is a class from the 
Java library; it’s predefined like String (but not part of the language definition the way String 
is). 

The type int is a rather strange beast. It’s not a class at all, but a primitive type. Variables 
or fields of type int don’t hold references to integer objects; they hold the integers themselves. 
You may think it a bit jarring that an object-oriented language has this rather unobject-oriented 
notion in it (and many people share your opinion). Sometimes we’ll actually need an integer that’s 
an object, and in that case we can use the class Integer from the Java library. How do you get 
from an int to an Integer and back? To create an Integer, you use a constructor: 

int_i = 5;

Integer obj_i = new Integer (i);


and to extract the primitive integer from an integer object, you call a method: 

5 



5 

int i = obj_i.intValue(); 

A little cumbersome, so that’s one reason people don’t like this design. 
If we run this code: 

1. Trans t = new Trans (); 
2. t.amount = 20; 
3. t.date = new Date (); 

a fresh object gets created, and its fields are set, resulting in this configuration: 

amount 

(Date) 

(Trans) 

20 

date 

t 

The expression on the right-hand side of Statement 1 is a call to a constructor: it makes a new 
object with default values for the fields. In this case, it creates a Trans object with zero for the 
amount and null for date. The Statement 2 is called a setter: it sets the value of the field amount 
of the object referred to by t. Statement 3 has another constructor call on the right; creating a 
new Date, which by default creates a Date object representing the moment at which the object is 
itself created. But it’s also a setter: it sets the date field of t to point to this new date. 

User-defined Constructors 

So we’ve succeeded in making a Trans object representing a deposit of twenty dollars at this moment 
in time. The way we did it – creating an uninitialized object and then setting its fields – is not 
a good one, however. We’ll want our transactions to be well-formed; for example we won’t want 
to have transactions that don’t have dates. And perhaps we’ll want every transaction to have a 
non-zero amount. Later, we’ll study these kinds of invariants in much more depth. 

For now, just observe that immediately after Statement 1 we have a transaction object that 
is not well formed. When an object is created, its fields are initialized to default values: null for 
object references, and zero for integers. So t.amount will be zero, and t.date will be null. These 
default values are rarely what you want; after all, which values make sense will depend on the 
problem we’re trying to solve. In this case, you’d have to know something about banking to know 
that a transaction of zero dollars is ill-formed. 

Is it a big deal that there’s a bogus transaction object hanging around between Statements 1 
and 2? Yes, it is, and here’s why. We’d like the responsibility for ensuring that objects of the class 
Trans are well formed to be handled entirely within the Trans class. In our program, you need to 
check not only the code of the class, but also the code that uses the class. At this scale, it’s not 
a disaster. But in a much larger program, you need as much modularity as you can get, confining 
tricky aspects of the program as much as possible to small areas of the code. 

To solve this problem, we declare our own constructor: 

class Trans {

int amount;


6 



6 

Date date;

Trans (int a, Date d) {amount = a; date = d;}


}


This constructor takes an amount and a date as arguments, and creates a transaction object 
with that amount and date. If I’d wanted to ensure that the amount of a transaction is non-zero, I 
could have added a check that threw an exception if the amount was zero; we’ll see how to do that 
later. 

A peculiar, but useful, property of constructors is that having defined our own constructor, the 
default constructor – the one that just initializes each field to default values – becomes no longer 
available. So Statement 1 will no longer compile. Instead, we can write 

Trans t = new Trans (20, new Date ()); 

and that one line of code will have the effect that Statements 1 to 3 had previously. 
(We haven’t fully solved the problem of modularizing the invariant of Trans, by the way. You 

can still mess up a Trans object by setting its date field to null from outside, for example. The 
first step to prevent this is to make use of Java’s accessibility mechanisms: we can make the fields 
private so they can’t be read or written from outside the class. In fact, this turns out not to be 
enough, as we’ll learn when we study data abstraction.) 

Conclusion 

Now we’ve seen all the key notions for how objects are manipulated in an object-oriented language. 
We’ve seen how they’re created; how references are bound to objects; and how their fields are set. 
We’ve mentioned the two fundamental kinds of equality – reference equality (tested with ==) and 
object equality (tested with an equals method – about which we’ll have much more to say later. 
These mechanisms comprise one important part of what it means to be ‘object oriented’. 

7



