
6.170 Tutorial 5 - HTML & CSS

Prerequisites
Goals of this Tutorial
Useful Resources for HTML & CSS
Topic 1: HTML

What is HTML?
HTML Tags
HTML Elements
Web Browsers
HTML Page Structure
HTML Versions
The <!DOCTYPE> Declaration
Declarations

Topic 2: CSS
What do .css files actually do?
CSS syntax
Most common selectors

Topic 3: Specificity and the “Cascade” in CSS:
Topic 4: CSS Box Model
Topic 5: Linking CSS to Rails Templates

Prerequisites
1. Have Ruby installed on your computer

Note: Having completed Tutorial P1, Ruby should already be installed on your computer.

Goals of this Tutorial
Become familiar with HTML & CSS

Useful Resources for HTML & CSS
1. Mozilla Developer Network (https://developer.mozilla.org/)

a. HTML: https://developer.mozilla.org/en-US/docs/HTML
b. CSS: https://developer.mozilla.org/en-US/docs/CSS

2. CSS Basic PDF: http://www.cssbasics.com/full.pdf
3. Layouts and Rendering in Rails: http://guides.rubyonrails.org/layouts_and_rendering.html

1

https://developer.mozilla.org
https://developer.mozilla.org/en-US/docs/HTML
https://developer.mozilla.org/en-US/docs/CSS
http://www.cssbasics.com/full.pdf
http://guides.rubyonrails.org/layouts_and_rendering.html

Topic 1: HTML

What is HTML?

HTML is a language for describing web pages.
•	 HTML stands for Hyper Text Markup Language
•	 HTML is a markup language
• A markup language is a set of markup tags

•	 The tags describe document content
•	 HTML documents contain HTML tags and plain text

•	 HTML documents are also called web pages

HTML Tags

HTML markup tags are usually called HTML tags
•	 HTML tags are keywords (tag names) surrounded by angle brackets like <html>
•	 HTML tags normally come in pairs like and

o	 The first tag in a pair is the start tag, the second tag is the end tag

o	 The end tag is written like the start tag, with a forward slash before the tag name
o	 Start and end tags are also called opening tags and closing tags

o	 There is often text inside the tags:
<tagname>content</tagname> (i.e. content)

•	 Certain HTML tags can also appear alone, like

HTML Elements

"HTML tags" and "HTML elements" are often used to describe the same thing.
But strictly speaking, an HTML element is everything between the start tag and the end tag,
including the tags:
<p>This is a paragraph.</p>

Web Browsers

The purpose of a web browser (such as Google Chrome, Internet Explorer, Firefox, Safari) is to
read HTML documents and display them as web pages. The browser does not display the HTML
tags, but uses the tags to interpret the content of the page:

HTML Page Structure

Below is an example of HTML page structure:
<html>

<body>

<h1>This a heading</h1>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

</body>

</html>

HTML Versions

Since the early days of the web, there have been many versions of HTML:
Version Year

HTML 1991
HTML+ 1993
HTML 2.0 1995
HTML 3.2 1997
HTML 4.01 1999
XHTML 1.0 2000
HTML5 / XHTML5 2012

The <!DOCTYPE> Declaration

The <!DOCTYPE> declaration helps the browser to display a web page correctly.
There are many different documents on the web, and a browser can only display an HTML page
100% correctly if it knows the HTML type and version used.

Screenshot of browser displaying sample heading and paragraph text removed due to copyright restrictions.
Refer to: Step 4 in HTML Editors.

http://www.w3schools.com/html/html_editors.asp

Declarations

Before HTML5, it was common to declare the HTML version at the start with something messy:

XHTML 1.0

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

HTML 4.01

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

HTML5 is much simpler, and is what we recommend you use:

HTML5

<!DOCTYPE html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/html4/loose.dtd

Topic 2: CSS

Here are screenshots of some sample P1.2's

The functionality is present in all these pages, but the sites themselves are visually unappealing.
(In fact, perhaps good visual design is essential to your site's functionality - e.g. people
abandoned MySpace as a social networking tool since they couldn't tolerate looking at the
cluttered, eye-soring profiles vs. Facebook's incredibly clean [c. 2007] layout.) Maybe we can find
a way to style the pages so that our sites could look... like this!

Let's look at an HTML page about whales:

But this isn't the best looking page on whales. One way to style it could be by manually editing
each HTML element with HTML attributes. However, now you're mixing concerns about what
data should be presented and how that data should be presented in the same file. The better way
is to create a separate, external file called a .css file which specifies how certain data on the
whale page should be presented.

What do .css files actually do?

CSS stands for Cascading Style Sheets. And .css files are just that: stylesheets. Your browser
has a default way of rendering certain HTML elements. But if you link an HTML page to a .css
file, the browser can parse that .css file and then override its native way of rendering HTML data.

CSS syntax

CSS files as a regular grammar:
CSS FILE ::= (RULE)*

RULE ::= (SELECTOR)+ (DECLARATION)*

DECLARATION ::= PROPERTY (VALUE)+

CSS files are a series of zero or more presentation rules. Here's a sample rule:

(from
http://w3schools.com/css/css_syntax.asp)

This rule demands that content between <h1> tags be blue and of font-size 12 pixels.

How does the browser know which HTML elements a rule targets? Notice that a rule
consists of 1 or more selectors. Selectors specify which elements the presentation rule is
targeting. In this example, the presentation rule is targeting all <h1> HTML elements.

Most common selectors

htmlElementType	 targets all HTML elements of type htmlElementType (e.g.
h1, span, div, etc.)

.className targets elements of class className

#idName targets one element with id idName (assuming HTML is

well-formed - ids should be unique per document!)
* targets all elements

selector1, selector2 targets all elements specified by either selector1 or
selector2

selector1 selector2	 targets all elements specified by selector2 that are
children (both direct and indirect) of elements specified by
selector1

selector1[attr=value] targets all elements specified by selector1 with a specified
attribute, e.g. input[type=password]

Selectors can also be combined! For example,
img.classA.classB#idName[alt=”Profile image”]

There are a lot more ways to select elements; for a complete list check out the W3C specs:
http://www.w3.org/TR/selectors/.

How does the browser know how to display particular selected elements? Notice that a
rule also consists of declarations, which are simply property:value pairs. The browser renders
targeted elements based on these property:value pairs. There are lots of properties - no need to
memorize all of them. Check a reference like the Mozilla Developer Network (MDN:

http://w3schools.com/css/css_syntax.asp
http://www.w3.org/TR/selectors/

https://developer.mozilla.org/en-US/docs/CSS/CSS Reference) to find the properties (and the
possible values that can be associated with those properties) you need in order to implement a
particular styling.

CSS let's you change almost everything about a page's appearance. Properties range from
typographical (font-size, letter-spacing, line-height, font-weight, font-style) to appearance (color,
opacity, backgrounds, border) to positional ("position", top/left/right/bottom) to size (height, width,
padding, margin) and more.

Let’s now style the whale page with what we know!

1.	 Create a new file called whale.css.
2.	 Link to it whale.html by including <link rel="stylesheet" href="/path/to/whale.css" /> in

whale.html's header.
3.	 Give the "Welcome..." <p> element the id "welcome". Add a presentation rule to

whale.css that makes this element's content larger, Arial font, centered, and of dark blue
color. For example:
#welcome {

font-family:Arial;

font-size:36px;

color: #3B6AA0;

text-align: center;

}

Now, whale page looks like:

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference?redirectlocale=en-US&redirectslug=CSS%2FCSS_Reference

4.	 Give the whale picture element the class "whale pic". Then, using CSS, center
the whale picture and give it rounded corners! For example:
.whale_pic {

display:block;

-webkit-border-radius: 20px;

-moz-border-radius: 20px;

border-radius: 20px;

margin-left: auto;

margin-right: auto;

}

Note: Margin-left and margin-right are equal to 'auto' so the browser calculates the left and right
margins of the .whale pic element on the fly as the browser is resized.

Now whale page looks like...

 5. Cool. Now let's give the page some good background color!
body {

background-color: #E0EEEE;
}

6. Cool. Now let's style the actual text of the page.
p, ul {

font-family: Arial;

color: #3B6AA0;

}

Whale page now looks like:

7.	 Now our whale page is marginally better looking. But wait! You now realize there's some
redundancy in the CSS. We can get rid of the color and font-family declarations in the
#welcome CSS rule since they're covered by the p presentation rule. Identifying and
getting rid of these redundancies can allow us to write cleaner CSS.

Topic 3: Specificity and the “Cascade” in CSS:

So we've just seen CSS in action, but...
What happens if there are rule conflicts (like if there are multiple stylesheets that target

the same elements)?

This is the Cascading part of the style sheets. There's a particular order of precedence for
applying stylesheets (information obtained from: http://bit.ly/5uu3iX [vanseo design],
http://bit.ly/bisLP [w3c css2 spec]). When applying this order of precedence, the stylesheets
cascade into each other, functionally creating a new stylesheet.

1. Get all CSS declarations from all stylesheets that apply to a particular property for a

particular element.

2. Break ties by origin and weight.

What do you mean an origin?

Your browser has a default stylesheet. A user can specify his/her own stylesheet for his/her
browser (for example, if s/he needs a particular stylesheet to see the content better due to
medical concerns). And then of course there are the style sheets the author of an HTML page
explicitly links to. So there are three possible stylesheet origins: browser, user, and author.

What do you mean by weight?

When you write a declaration like

h1 {color: blue;}

you can add !important after the value in the declaration to specify that that particular declaration
should have some overriding power. For example:

h1 {color: blue !important;}.

So if your HTML page links to one stylesheet that says

h1 {color: red;}

and another that says

h1 {color: blue ! important;}

http://bit.ly/5uu3iX
http://bit.ly/5uu3iX

then the latter rule trumps over the former.

Note: !important is considered bad practice - it’s usually a sign that your original classes,

IDs, and styles were not well thought out and you’re brute-forcing things.

The order of precedence in terms of origin and weight is: user important overrides author
important which overrides author unimportant which overrides user unimportant which overrides
any browser rules.

U Important >> A Important >> A Unimportant >> U Unimportant >> Browser

3. Break further ties by specificity.

What do you mean by specificity?

Intuition test - Assume we had an <h1> element with class "intro". Assume the following rules
were in the same stylesheet; which trumps which?

h1 {color: red;}
h1.intro {color: blue;}

The rules are from the same kind of origin and are both unimportant. We break the tie with
specificity and decide that the second rule wins out. But what about the following case?

h1 p.intro {color: red;}
#title p {color: blue;}

Assume we had an element that satisfied both selectors (e.g. a paragraph element of class
"intro" that was embedded within an h1 element with id "title"). Which rules wins out? Not so
obvious! Let's see how browsers (roughly) calculate CSS specificity. For more details, check
out a CSS book. :)

Each declaration is assigned a tuple (i, c, e) [ice is easy to remember :)] where i is the number
of ids specified by the selector, c is the number of classes specified by the selector, and e is the
number of HTML element types specified by the selector. For example,

p � (0, 0, 1)
h1 � (0, 0, 1)
#title � (1, 0, 0)
h1#title � (1, 0, 1)
h1#title p � (1, 0, 2)
h1#title p.intro � (1, 1, 2)

 �

 �

So given two selectors s1 and s2 with corresponding ice tuples t1 and t2. To determine which
selector is more specific, iterate through t1 and t2 one index at a time. If at any point, t1's value at
that index is greater than t2's, then return: s1 is the more specific selector. If t1's value at that
index is equal to t2's value, then iterate to the next index.

For example, given the selectors above (p, h1, #title, h1#title, h1#title p, and h1#title p.intro), first
we can weed out p and h1 since they have no ids specified in their selector, but all the other
selectors have 1 id specified. But then of the remaining selectors, only h1#title p.intro has a
class specified, so it is the most specific selector.

So who wins here?

h1 p.intro {color: red;} (0, 1, 2)
#title p {color: blue;} (1, 0, 1)

Yeah. #title p. IDs are very "powerful" when it comes to specificity - use them sparingly. You
should rarely have a reason to use an ID, and you should use classes almost always.

4. Break any remaining ties with the declaration declared most "recently" (bottom of the CSS
file).

So if in a particular stylesheet you have the following rules:

h1 {color: blue;}
h1 {color: red;}

The second rule trumps over the 1st since it was declared more "recently". It's analogous to
doing

x = 1
x = 2

in a programming language.

Asset tag helpers provide methods for generating HTML that link views to stylesheets.
Stylesheets is one of the six asset tag helpers available in Rails:

• auto_discovery_link_tag

• javascript_include_tag

• stylesheet_link_tag

• image_tag

• video_tag

• audio_tag

If you have two separate author stylesheets that both have a rule targeting the same
element...like:

<link rel="stylesheet" type="text/css" href="css/whale1.css" />
<link rel="stylesheet" type="text/css" href="css/whale2.css" />

Then the rule declared in whale2.css wins.

So within a stylesheet, the last declared rule wins. Among different stylesheets of the same
origin, the rule in the last linked stylesheet wins. Although these rules hold true, do not rely

on them in your CSS. It leads to brittle code where re-ordering files or compressing

them together can break your styles.

Finally, inline CSS inside HTML attributes win over CSS declared in the <head> which wins over
CSS linked to in external stylesheets.

Topic 4: CSS Box Model

So we now have a relatively good understanding of how CSS is used and how it's processed.
Let's focus on a specific, often-used case of applying CSS: positioning, aligning elements, or
giving elements certain degrees of margin/padding. But these properties can be tricky to work
with. Trying to set these properties with CSS without an understanding of the model underlying
these properties can lead to problems when debugging your layout (e.g. why won't this element
center? why can't I align all these input elements? etc). So let's learn about this model!

In terms of rendering, every HTML element is constrained within a rectangular box. Here, inspect
the elements of any webpage with a browser's element inspector to show students the
rectangular boxes.

Here's the box model in a nutshell:

Margin vs padding: margin and padding seem to be very similar - they add "space" around an
HTML element. There are some important differences, though. As you can see from above, a
larger padding will push the border out. Additionally, the background will still appear in the
"padding" of the box. So think of padding as part of the element, whereas margin is space
around it.

The width/height attributes of an HTML element only correspond to the content box, which
contains text/images/etc. To get the full dimensions of an HTML element, you'll have to add the
width/height of the content plus the padding plus the border plus the appropriate margins.

You can add margins in several ways:
margin: 5px; // Adds margin on all sides

margin-top: 7px; // Only top
margin-[bottom|left|right]: 3px; // Similar for other sides
margin: 3px 5px; // Sets top and bottom to 3px, left and right to 5px
margin: 3px 5px 6px 7px; // Sets top right bottom left (clockwise order)
margin: 3px 5px 6px; // Sets top to 3px, left and right to 5px, and bottom to 6px

Modify the #welcome presentation rule in whale.css to:
#welcome {

font-size: 36px;

text-align: center;
padding: 10px;

border: solid;

}

Then inspect the "Welcome to my page..." element in the whale page in the browser. Note how
all four components of the box model for the #welcome element are highlighted.

Topic 5: Linking CSS to Rails Templates

Cool. So that's a good amount of CSS background. Before we do some practice exercises, let's
go over how you'd actually link a Rails template to a CSS file.

1) Place the appropriate CSS file in your app/assets/stylesheets directory.
2) In your layout file, use the following Rails code:

<%= stylesheet_link_tag "main", "/photos/columns" %>

This will link your layout file to app/assets/stylesheets/main.css and
app/assets/stylesheets/photos/columns.css.

And that's it!

Topic 6: Additional Notes
• In Rails, SCSS/SASS provide simple but useful extensions like variables and mixins to

CSS which help "DRY"
•	 There are many useful stylesheets available online. http://cssgrid.net/ is a nice one which

is available for free!

Next Tutorial: JQuery

http://www.google.com/url?q=http%3A%2F%2Fcssgrid.net%2F&sa=D&sntz=1&usg=AFQjCNGNIadyTlNYiJtYser5_Hmh65Q7Yw

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

