6.172 —— 4
Performance III) I SPEED
LIMIT

Engineering

of Software
PER ORDER OF 6.172

Systems

Speculative Parallelism
& Leiserchess

Charles E. Leiserson

© 2012-2018 by the Lecturers of MIT 6.172

SPEED |
LIMIT

\PER ORDER OF 6.172)

© 2012-2018 by the Lecturers of MIT 6.172

#define uint unsigned int

bool sum _exceeds(uint *A, size t n, uint limit) {
uint sum = 0;
for (size t i=0; i<n; ++1i) {
sum += A[i];
}

return sum > limit;

¥

© 2012-2018 by the Lecturers of MIT 6.172

Short-Circuiting

Optimization (Bentley rule)
Quit early if the partial product ever exceeds the
threshold.

#define uint unsigned int

bool sum _exceeds(uint *A, size t n, uint limit) {
uint sum = 0;
for (size t i=0; i<n; ++i) {
sum += A[i];
if (sum > limit) return true;

¥

return false;

) 7

© 2012-2018 by the Lecturers of MIT 6.172

Thresholding a Sum in Parallel

#define uint unsigned int

bool sum_exceeds(uint *A, size t n, uint limit) {
uint sum;
CILK_C_REDUCER_OPADD(sum, uint, 0);
CILK_C_REGISTER _REDUCER(sum);
cilk for (size t i=0; i<n; ++1) {
REDUCER_VIEW(sum) += A[i];
}
CILK_C_UNREGISTER_REDUCER(sum);
return REDUCER_VIEW(sum) > limit;

j 4

Question
How can we parallelize a short-circuited loop?

© 2012-2018 by the Lecturers of MIT 6.172 °

Divide-and-Conquer Loop

#define uint unsigned int

uint sum_of(uint *A, size t n) {
ol ol (Tg P B O
uint sl1 = cilk _spawn sum_of(A, n/2);
uint s2 = sum of(A + n/2, n - n/2);
cilk sync;
uint sum = sl + s2;
return sum;

}
return A[O];

}

bool sum_exceeds(uint *A, size t n, uint limit) {
returne Sum_ ofEA N Y 5F 1dmids

}

How might we quit early and save work if
the partial sum exceeds the threshold?

© 2012-2018 by the Lecturers of MIT 6.172 6

Short-Circuiting in Parallel

}

}

#define uint unsigned int

if (*abort flag) return 9;

ol 2Tl e %1t

uint sl1 = cilk _spawn sum of(A, n/2, limit,

Uinty sumof CUint=*A g sizet te v, “*uint: LFimit; [sEnisssahasie

lag) {

abort flag);

uint s2 = sum _of(A + n/2, n - n/2, limit, |abort flag

cilk sync;
uint sum = sl + s2;

if (sum > limit && !*abort flag) *abort flag = true;

return sum;

}
return A[O];

bool abort flag = false;

return sum of(A, n, limit,

&abort flag

bool sum exceeds(uint *A, size t n, uint limit) {

W >alaimd ts

i

4

© 2012-2018 by the Lecturers of MIT 6.172

Short-Circuiting in Parallel

#define uint unsigned int

uint sum_of(uint *A, size t n, uint limit, bool *abort flag) {
if (*abort_flag) return o;
ol 2Tl e %1t
uint sl1 = cilk spawn sum_of(A, n/2, limit, abort flag);
UTTIE 552 = st QR CAME A2 N Se2 -l G- abortltl otk
ciblk . symc ;
uint sum = sl + s

if (sum > limit § Notes:

} return sum; e Beware: nondeterministic code!
B el e The benign race on fabort_flag.
} can cause true-sharing contention

oA e A o if yo’u are not careful.
bool abort flag = { ® DON't forget to reset abort_flag
return sum of(A, n| after use!

} e Is a memory fence necessary? No!/

© 2012-2018 by the Lecturers of MIT 6.172 8

Speculative Parallelism

Definition. Speculative parallelism occurs when
a program spawns some parallel work that might
not be performed in a serial execution.

RULE OF THUMB: Don’t spawn speculative work
unless there is little other opportunity for
parallelism and there is a good chance it will be
needed.

© 2012-2018 by the Lecturers of MIT 6.172 9

SPEED |
LIMIT

\PER ORDER OF 6.172)

© 2012-2018 by the Lecturers of MIT 6.172 10

Review: Alpha-Beta Analysis

DD DD DD

Theorem [KM75]. For a game tree with branching
factor b and depth d, an alpha- beta search with moves
searched in best—¥i exactly bld/2l +

bld/2] — 1 node

Key optimization
The naive algor Prune the game tree. ¢ 5¢ ply d. For

the same work, ectively doubled.
For the same depth, the Work is square-rooted.

© 2012-2018 by the Lecturers of MIT 6.172

Parallel Alpha-Beta

First child o Last child

. . T\ . . T\ T\
000000 C{OE)JO C{OE) OE)
Observation: In a best-ordered tree, the degree of
every node is either 1 or maximal.

IDEA [FMMO91]: If the first child fails to generate a beta
cutoff, speculate that the remaining children can be
searched in parallel without wasting work: “Young

Siblings Wait.” Abort subcomputations that prove to

be unnecessary.
© 2012-2018 by the Lecturers of MIT 6.172 12

typedef struct searchNode {
struct searchNode *parent;
position t position;
bool abort flag;

} searchNode;

IDEA: Poll up the search tree to see whether any
internal node desires an abort.

© 2012-2018 by the Lecturers of MIT 6.172 13

Problem with Young Siblings Wait

First child Last child

DD DD DD

Problem: In general, the game tree is not best-
ordered, meaning that parallel alpha-beta search
using the “young siblings wait” idea will waste work.

© 2012-2018 by the Lecturers of MIT 6.172 b

Alpha-Beta Search: Example

S=

230610600500 400200

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

§$<3

S$=3 S$=7

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

S= 26

zsomoeoosowozo

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

§$=3

S= 26

zsomoeoosowozo

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

© 2012-2018 by the Lecturers of MIT 6.172

Alpha-Beta Search: Example

Second sibling
provides cutoff.

© 2012-2018 by the Lecturers of MIT 6.172 23

Young Siblings Wait: Example

Parallel recursive full-
window searches.

© 2012-2018 by the Lecturers of MIT 6.172

Young Siblings Wait: Example

§$=3

S= 26

zsomoeoosowozo

© 2012-2018 by the Lecturers of MIT 6.172

Young Siblings Wait: Example

Parallel recursive full-
window searches.

© 2012-2018 by the Lecturers of MIT 6.172

Young Siblings Wait: Example

4 Cutoff from

available to prune
S these searches.

~

second child is not

.

© 2012-2018 by the Lecturers of MIT 6.172 o

Parallel recursive full-
window searches.

Getting More Aborts

I
I
I
I
|
|
I
I
I
\ !
I
I
I
I
I
I
|

IDEA: Allow children to update parent’s alpha/beta
value concurrently.

« Children can poll for the alpha/beta value.

« Problem: Difficult to implement efficiently.

« Problem: Efficiency relies on lucky scheduling!

© 2012-2018 by the Lecturers of MIT 6.172 28

Wasted Work in Parallel Alpha-Beta

DD DD DD

In practice, speculative alpha-beta search of a game tree
will always waste some work.

Aim to balance two conflicting goals:
« Generate enough parallel work to get parallel speedup.

« Don’t do too much unnecessary work.

29

© 2012-2018 by the Lecturers of MIT 6.172

SPEED |
LIMIT

\PER ORDER OF 6.172)

© 2012-2018 by the Lecturers of MIT 6.172 30

Jamboree Search

First child

by

dob TINANN

Last child

IDEA [K94]: After searching the first child, perform a

scout search of the remaining children in parallel, and

sequentially value any tests that fail.

* In other words, do searchPV serially, and do
scout-search in parallel.

Intuition: It’s fine to waste work on a zero-window

search, but not on a full-window search.

© 2012-2018 by the Lecturers of MIT 6.172

31

Jamboree Search: Example

20 Ab.

Recursive zero-
window search

for S > 3.

© 2012-2018 by the Lecturers of MIT 6.172

Jamboree Search: Example

§$<3

S= §$=3 23

2306-1-0 600500 4020

© 2012-2018 by the Lecturers of MIT 6.172

Jamboree Search: Example

Recursive zero-
window search

for S > 3.

© 2012-2018 by the Lecturers of MIT 6.172

Jamboree Search: Example

,___ — — — " I— _____

I

Recursive zero— Recursive zero-
window search window search

for S > 3. for S > 3.

© 2012-2018 by the Lecturers of MIT 6.172 %

Jamboree Search: Example

" Test failed. Wa'it for
preceding children to
finish, then recursively
S value this tree. p

© 2012-2018 by the Lecturers of MIT 6.172 %

Jamboree Search: Example

© 2012-2018 by the Lecturers of MIT 6.172

Jamboree Search: Example

© 2012-2018 by the Lecturers of MIT 6.172

Jamboree Search: Example

Recursive zero-
window search

for S > 6.

© 2012-2018 by the Lecturers of MIT 6.172

Jamboree Search: Example

" Test failed. Wait for)ecursive zero-
preceding children to Vindow search
finish, then recursively | for S > 6.

L value this tree.

© 2012-2018 by the Lecturers of MIT 6.172 40

Jamboree Search: Example

1

S>3

§$<3

cPe

|_______ e —

© 2012-2018 by the Lecturers of MIT 6.172

Recursive full-
width search.

Jamboree Search Pseudocode ko4

JAMBOREE(Nn, a,) |
1 if n is a leaf then return STATICEVAL(n) Full-window
2 elie, S s G T e N B e () search of
Parallel zero- |b = —JAMBOREE(CO, B, -Q) e . first child.
window if b = 3 then return b
searches. |if b > a then a = b
~ parallel_for (c; in {c,,C,,..,C}) Abort all
7 5= —JUMBOREE (& , = a~JIE =) siblings
8 if s > b then b = s and return.
9 if s = 3 then abort-and-return s
10 if s > a then
11 wait for completion of all c; where j < i
12 S.= =JAMBOREE(€;, 0 ,=&)
Eoll—window i: 2 i 2 :Ez: szri; and-return s Why?
search on if s> b then b = s
failure. A= 7

© 2012-2018 by the Lecturers of MIT 6.172

42

Getting Started with Parallel Leiserchess

The Leiserchess codebase is already structured to
support a simple parallelization of scout search.

scout _search.c

static score_t scout _search(searchNode* node, int depth,
uinté4 t* node _count _serial) {

cilk for (int mv_index = 0; mv_index < num_of moves;
mv_index++) {
// Get the next move from the move list.
int local index = number_of moves evaluated++;
move t mv = get move(move list[local index]);

W @ Resulting search is not R
the same as Jamboree
} search, but it’s enough to 4

L get you started.

© 2012-2018 by the Lecturers of MIT 6.172 e

Tips for Parallelizing Leiserchess

o Simply parallelizing the loop will produce code with
races! Consider how you can address them:
e Synchronize concurrent accesses, e.dg., using
locks.
» Make a thread-local copy when a computation is
stolen.
o Use a thread-local data structure, but don’t copy
data between threads.
e Decide the race is benign and leave it be.
e Avoid generating too much wasted work.
e Duplicate the loop over the moves in
scout_search, and make one copy parallel.
o Switch from the serial loop to the parallel loop
when the number of legal moves is high enough.

© 2012-2018 by the Lecturers of MIT 6.172 4

SPEED |
LIMIT

\PER ORDER OF 6.172)

© 2012-2018 by the Lecturers of MIT 6.172 45

Opening Book

e Precompute best moves at the beginning of the
game.

e The [KM75] theorem implies that it is cheaper
to keep separate opening books for each side
than to keep one opening book for both.

© 2012-2018 by the Lecturers of MIT 6.172 46

o Rather than searching the game tree to a given
depth d, search it successively to depths 1, 2, 3,
.., d.

e With each search, the work grows exponentially,
and thus the total work is only a constant factor
more than searching depth d alone.

e During the search for depth k, keep move-
ordering information to improve the effectiveness
of alpha-beta during search k+1.

» Good mechanism for time control.

© 2012-2018 by the Lecturers of MIT 6.172 4

Endgame Database

IDEA: If there are few enough pieces on the

board, precompute the outcomes and store

them in a database.

e It doesn’t suffice to store just win, loss, or
draw for a position.

o Keep the distance to mate to avoid cycling.

© 2012-2018 by the Lecturers of MIT 6.172 8

Quiescence Search

e Evaluating at a fixed depth can leave a board
position in the middle of a capture exchange.

o At a “leaf” node, continue the search using only
captures — quiet the position.

e Each side has the option of “standing pat.”

© 2012-2018 by the Lecturers of MIT 6.172 49

* In most positions, there is always something
better to do than nothing.

 Forfeit the current player’s move (illegal in
chess), and search to a shallower depth.

o If a beta cutoff is generated, assume that a full-
depth search would have also generated the
cutoff.

e Otherwise, perform a full-depth search of the
moves.

e Watch out for zugzwang!

© 2012-2018 by the Lecturers of MIT 6.172 %0

Other Search Heuristics

o Killers

= The same good move at a given depth tends to
generate cutoffs elsewhere in the tree.

» Move extensions — grant an extra ply to the
search if

= the King is in check,
= certain captures,
= singular (forced) moves.

© 2012-2018 by the Lecturers of MIT 6.172 o

e The search tree is actually a dag!

o If you’ve searched a position to a given depth
before, memoize it in a hash table (actually a
cache), and don’t search it again.

e Store the best move from the position to
improve alpha-beta and minimize wasted work
in parallel alpha-beta.

e Tradeoff between how much information to keep
per entry and the number of entries.

© 2012-2018 by the Lecturers of MIT 6.172 52

e For each square on the board and each different
state of a square, generate a random string.

e The hash of a board position is the XOR of the
random strings corresponding to the states of
the squares.

e Because XOR is its own inverse, the hash of the
position after a move can be accomplished
incrementally by a few XOR’s, rather than by
computing the entire hash function from
scratch.

© 2012-2018 by the Lecturers of MIT 6.172 53

Zobrist key

Score

Move

Quality (depth searched)

Bound type (upper, lower, or exact)
Age

© 2012-2018 by the Lecturers of MIT 6.172 %4

Typical Move Ordering

1. Transposition-table move

2. Internal iterative deepening

3. Nonlosing capture in MVV-LVA (most valuable
victim, least valuable aggressor) order

4. Killers

5. Losing captures

6. History heuristic

© 2012-2018 by the Lecturers of MIT 6.172 %

Late—-Move Reductions (LMR)

Observation
With a good move ordering, a beta cutoff
will either occur right away or not at all.

Strategy
e Search first few moves normally.
e Reduce depth for later moves.

© 2012-2018 by the Lecturers of MIT 6.172 %

Board Representation

Bitboards
= Use a 64-bit word to represent, for example,

where all the pawns are on the 64 squares of the
board.

= Use POPCOUNT and other bit tricks to do move
generation and to implement other chess
concepts.

© 2012-2018 by the Lecturers of MIT 6.172 5

https://www.chessprogramming.org/

© 2012-2018 by the Lecturers of MIT 6.172 %8

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

59

