

Performance Engineering of Software Systems
Massachusetts Institute of Technology 6.172
Prof. Charles E. Leiserson and Prof. Julian Shun Practice Quiz 4

Practice Quiz 4

Name:

Instructions

• DO NOT open this quiz booklet until you are instructed to do so.

• This quiz booklet contains 13 pages, including this one. You have 80 minutes to earn 80
points.

• This quiz is closed book, but you may use one handwritten, double-sided 8 1/200 × 1100 crib
sheet and the Master Method card handed out in lecture.

• When the quiz begins, please write your name on this coversheet, and write your name
on the top of each page, since the pages may be separated for grading.

• Some of the questions are true/false, and some are multiple choice. You need not explain
these answers unless you wish to receive partial credit if your answer is wrong. For these
kinds of questions, incorrect answers will be penalized, so do not guess unless you are
reasonably sure.

• Good luck!

Number Question Parts Points Score Grader

0 Name on Every Page 13 2

1 True or False 8 16

2 Back Of The Envelope 3 10

3 Branch Prediction 3 9

4 Variable Byte Compression 2 11

5 LLVM 6 12

6 Algorithm Analysis 4 20

Total 80

1

1 TRUE OR FALSE (8 PARTS, 16 POINTS)

1 True or False (8 parts, 16 points)

Incorrect answers will be penalized, so do not guess unless you are reasonably sure. You need
not justify your answer unless you want to leave open the possibility of receiving partial credit if
your answer is wrong.

1.1

Because thermal limits prevented CPU manufacturers from increasing clock frequencies signifi-
cantly, they began to produce multicore microprocessors.

True False

1.2

Inlining a function tends to improve performance by reducing the number of instruction cache
misses.

True False

1.3

Suppose that a recursive function performs work on a problem of size N according to the recur-
rence T(N) = 2T(N/3) + Θ(N lg N). Then coarsening the recursion is unlikely to significantly
improve performance.

True False

1.4

Compilers eliminate data dependencies through register renaming by replacing x86 logical reg-
isters with physical registers.

True False

2

1.5 1 TRUE OR FALSE (8 PARTS, 16 POINTS)

1.5

There can never be a true-, anti-, or output-data dependence between the following two lines of
code:

movl %eax , 8(%esi)
lea 24(%esi, %edi, 8) , %ecx

True False

1.6

When using the MSI (modified, shared, invalid) cache coherence protocol, the state of a cache
line in a processor’s cache may transition directly from shared to invalid.

True False

1.7

If a memory location in a program is read by two logically parallel instructions, then a read-read
determinacy race exists.

True False

1.8

A greedy scheduler schedules a computation with work T1 and span T∞ in time Tp ≤ max (T1/P, T∞)
on a P-processor ideal parallel computer.

True False

3

2 BACK OF THE ENVELOPE CALCULATIONS (3 PART, 10 POINTS)

2 Back Of The Envelope Calculations (3 Part, 10 Points)

Perform a back-of-the-envelope calculation for the work of a serial execution of get_row_sums on
a 1000-by-1000 matrix. Assume that you have one 3 GHz scalar processing core which executes
only one instruction per cycle, and that everything is in cache. �

1 # define ROWS 1000
2 # define COLS 1000
3
4 typedef int32_t element_t ;
5
6 void get_row_sums (element_t M[ROWS][COLS],
7 element_t row_sums [ROWS]) {
8 for (int32_t i = 0; i < ROWS ; i ++) {
9 element_t sum = 0;

10 for (int32_t j = 0; j < COLS ; j ++) {
11 sum += M[i][j];
12 }
13 row_sums [i] = sum ;
14 }
15 �} �

2.1

How long does get_row_sums take assuming that vectorization is disabled? Please circle the letter
of your answer.

A 0.00001–0.001 seconds.
B 0.001–0.1 seconds.
C 0.1–10 seconds.
D 10–1000 seconds.
E None of the above.

4

2.2

2.2 2 BACK OF THE ENVELOPE CALCULATIONS (3 PART, 10 POINTS)

After the code is compiled with vectorization enabled (with 128-bit vector registers), what is the
performance of the program compared to the original program? Please circle the letter of your
answer.

A More than twice as slow as the code without vectorization.
B Slower, but less than twice as slow as the code without vectorization.
C About the same as the code without vectorization.
D Faster, but less than twice as fast as the code without vectorization.
E More than twice as fast as the code without vectorization.

2.3

With vectorization enabled (with 128-bit vector registers), what is the performance of the program
if you change element_t from int32_t to int8_t? Please circle the letter of your answer.

A More than twice as slow as the vectorized code with int32_t’s.
B Slower, but less than twice as slow as the vectorized code with int32_t’s.
C About the same as the vectorized code with int32_t’s.
D Faster, but less than twice as fast as the vectorized code with int32_t’s.
E More than twice as fast the vectorized code with int32_t’s.

5

3 BRANCH PREDICTION (3 PARTS, 9 POINTS)

3 Branch Prediction (3 parts, 9 points)

Using asymptotic Θ-notation, give the expected number of branch misses for the following sort-
ing algorithm on an array of N distinct integers on (1) a sorted input (increasing order); (2) a
reverse sorted input (decreasing order); and (3) a randomly ordered input. �

1
2
3
4
5
6
7
8
9

10
11

void insertion_sort (int * A ,
for (int j = 0; j < N; j ++)

int insert = A[j];
int slot = j;
while (slot > 0 && insert

A[slot] = A[slot -1];
slot --;

}
A[slot] = insert ;

}

�}

int N) {
{

< A[slot -1]) {

�

3.1 Sorted

A
B
C
D
E

Θ(1)
Θ(N)
Θ(N lg N)
Θ(N2)
None of the above.

3.2 Reverse Sorted

A
B
C
D
E

Θ(1)
Θ(N)
Θ(N lg N)
Θ(N2)
None of the above.

3.3 Random Order

A
B
C
D
E

Θ(1)
Θ(N)
Θ(N lg N)
Θ(N2)
None of the above.

6

4 VARIABLE BYTE COMPRESSION (2 PARTS, 11 POINTS)

4 Variable Byte Compression (2 parts, 11 points)

Byte codes are used as a way to compress sequences of positive integers of varying magnitudes.
Each integer is represented as a series of bytes, where the most significant bit of a byte is called
the continuation bit, and the remaining 7 bits are the payload. To encode an integer, we take its
binary representation ignoring leading zeros and group the remaining bits in 7-bit payloads. The
remaining payloads are placed in bytes, with the least significant bits being in the first byte and
the most significant bits being in the last byte. The continuation bit in each byte is set to 1 except
for the last byte where it is set to 0.

For example, to encode the integer 6172, we inspect its binary representation (without the leading
0’s), which is 0b1100000011100. We create two payloads, h0011100i and h0110000i, and place
them into bytes with the first byte’s continuation bit set to 1 and the second byte’s continuation
bit set to 0. The resulting bytes that encode the integer 6172 are 0b10011100 and 0b00110000,
where the first byte encodes the lower-order bits and the second byte encodes the higher-order
bits.

4.1

Suppose that the sequence of bytes that resulted from encoding some integer x was 0b11001010,
0b10001011, and 0b00101100. What is x in hexadecimal notation ignoring the leading zeros?

A 0x1645CA

B 0x160BCA

C 0x2C8BCA

D 0xB05CA

E None of the above.

7

4.2 4 VARIABLE BYTE COMPRESSION (2 PARTS, 11 POINTS)

4.2

The following program encodes an array In of N positive integers into a sequence of bytes, stored
in the array Out. Assume that sufficient memory has been allocated for Out. �

1 void encode(uint32_t* In, int32_t N, unsigned char* Out) {
2 for(int32_t i=0; i < N; i++) {
3 uint32_t x = In[i];
4 while(x) {
5 char byte = (A) ;
6 x = (B) ;
7 if(x)
8 { (C) ;}
9 *Out++ = byte;

10 }
11 }
12 �} �

For each blank in the code, write its label (A, B, or C) next to the expression that best fits. (Hint:
Some blanks can take more than one expression, but only one is “best.”)

byte & 0x80 x << 7

byte & 0x8 x = x << 7

byte & ˜0x80 x = x >> 1

byte &= 0x80 x >> 8

byte ˆ 0x80 x ˆ 0x7f

byte |= 0x80 x ˆ 0x80

byte x | 0x7f

x >> 7 x | 0x80

x & 0x7f x++

x & 0x7 x-7

x & 0x80 x

8

C

5 LLVM (6 PARTS, 12 POINTS)

5 LLVM (6 parts, 12 points)

This question explores your understanding of control-flow graphs and Bentley optimizations.
Consider the following complete C source file.

 �
1 int value1 () ;
2 int value2 () ;
3
4 __attribute__ ((const))
5 int bar (bool p) {
6 int val ;
7 if (p)
8 val = value1 ();
9 else

10 val = value2 ();
11 return val ;
12 }
13
14 void foo (int * restrict Y,
15 const int * restrict X ,
16 int n , bool p) {
17 for (int i = 0; i < n; ++ i)
18 Y[i] += bar (p) * X[i];
19 �} �

When compiling this C code, LLVM can perform optimizations involving the functions foo and
bar defined in this file, but not on the functions value1 and value2, which are only declared in
this file. Suppose that LLVM compiles the following functions with the specified optimizations:

A The function bar with no optimization.

B The function foo with no optimization.

The function foo with function inlining and no other optimizations.

D The function foo with loop unrolling and no other optimizations.

E The function foo with code hoisting followed by function inlining and no other optimiza-
tions.

The next page contains several pictures of control-flow graphs. For each control-flow graph,
circle either the unique letter of the function-and-optimization scenario from above that it corre-
sponds to, or circle “None” if it does not correspond to any of the scenarios. While not strictly
necessary to solve this question, the LLVM IR is provided on Page 11 for your reference.

9

5 LLVM (6 PARTS, 12 POINTS)

A B C D E None A B C D E None A B C D E None

A B C D E None A B C D E None A B C D E None

10

5 LLVM (6 PARTS, 12 POINTS)

Here is the LLVM IR for the two functions bar and foo without function inlining, loop un-
rolling, or code hoisting. �
1 define i32 @bar(i1 zeroext) #0 {
2 br i1 %0, label %2, label %4
3
4 ; <label >:2: ; preds = %1
5 %3 = call i32 (...) @value1 () #3
6 br label %6
7
8 ; <label >:4: ; preds = %1
9 %5 = call i32 (...) @value2 () #3

10 br label %6
11
12 ; <label >:6: ; preds = %4, %2
13 %.0 = phi i32 [%3, %2], [%5, %4]
14 ret i32 %.0
15 }
16
17 define void @foo(i32* noalias , i32* noalias , i32 , i1 zeroext) #2 {
18 %5 = icmp sgt i32 %2, 0
19 br i1 %5, label %4, label %. _ret_edge
20
21 ; <label >:6: ; preds = %4, %6
22 %.01 = phi i32 [0, %4], [%16, %6]
23 %7 = call i32 @bar(i1 zeroext %3) #4
24 %8 = sext i32 %.01 to i64
25 %9 = getelementptr inbounds i32 , i32* %1, i64 %8
26 %10 = load i32 , i32* %9, align 4
27 %11 = mul nsw i32 %7, %10
28 %12 = sext i32 %.01 to i64
29 %13 = getelementptr inbounds i32 , i32* %0, i64 %12
30 %14 = load i32 , i32* %13, align 4
31 %15 = add nsw i32 %14, %11
32 store i32 %15, i32* %13, align 4
33 %16 = add nsw i32 %.01, 1
34 %17 = icmp slt i32 %16, %2
35 br i1 %17, label %6, label %. _ret_edge
36
37 ._ret_edge: ; preds = %6, %4
38 ret void
39 �} �

11

6 ALGORITHM ANALYSIS (4 PARTS, 20 POINTS)

6 Algorithm Analysis (4 parts, 20 points)

Recall the prefix sum algorithm from Homework 5, and consider the following alternative parallel
prefix sum algorithm, where A is the input array with N elements. The array element A[N + 1]
is also allocated to store the total sum. Assume that N is an exact power of 2.

Note that you do not need to understand why the code is correct — just its structure. �
1 void upsweep(int64_t* A, int64_t N) {
2 for (int64_t d = 1; d < N; d*=2) {
3 cilk_for (int64_t k = 0; k < N; k += 2*d) {
4 A[k + 2*d - 1] = A[k + d - 1] + A[k + 2*d - 1];
5 }
6 }
7 }
8
9 void downsweep(int64_t* A, int64_t N) {

10 A[N] = A[N - 1] //total sum
11 A[N - 1] = 0;
12 for (int64_t d = N / 2; d >= 1; d = d / 2) {
13 cilk_for(int64_t i = 0; i < N; i += 2*d) {
14 int64_t temp = A[i + d - 1];
15 A[i + d - 1] = A[i + 2*d - 1];
16 A[i + 2*d - 1] = temp + A[i + 2*d - 1];
17 }
18 }
19 }
20
21 void prefix_sum(int64_t* A, int64_t N) {
22 upsweep(A, N);
23 downsweep(A, N);
24 �} �

6.1

What is the work of prefix_sum? Give your answer in terms of N using Θ-notation.

What is the span of prefix_sum? Give your answer in terms of N using Θ-notation.

12

6.2

6.3 6 ALGORITHM ANALYSIS (4 PARTS, 20 POINTS)

Consider the following algorithm for computing a histogram on a length-N array A of in-
tegers in the range {0,1, . . . ,k − 1}, where k ≤ N. The algorithm uses a two-dimensional array
H, whose dimensions are (N/k) + 1 rows by k + 1 columns. Assume for simplicity that N is
divisible by k. Here is the algorithm:

1. Partition the array into N/k length-k subarrays A0, A1, . . . , AN/k−1.
2. Initialize each element of the matrix H to 0.
3. For all r = 0,1, . . . , N/k − 1, sequentially count the number of occurrences of each integer

in Ar, and store the number of occurrences of each integer c in H[r][c] (which fills in a row
of H). Each row is processed sequentially but different rows can be processed in parallel.

4. For each c = 0,1, . . . ,k − 1, perform a prefix sum on the cth column of H, that is, on the values
H[r][c] for all 0 ≤ r < N/k. Different columns can be processed in parallel. H[N/k][c] now
stores the number of integers of value c in A.

The code for this algorithm is shown below. Assume that vertical_prefix_sum(H, c, N/k)
computes the prefix sum on the cth column of H with N/k entries in parallel. �

1 // H has dimension (n/k)+1 by k+1
2 void histogram(int64_t* A, int64_t ** H, int64_t N, int64_t k) {
3 cilk_for (int64_t r = 0; r < N/k; r++) {
4 for (int64_t c = 0; c < k; c++) {
5 H[r][c] = 0;
6 }
7 for (int64_t c = 0; c < k; c++) {
8 H[r][A[r * N/k + c]]++;
9 }

10 }
11 cilk_for (int64_t c = 0; c < k; c++) {
12 vertical_prefix_sum(H, c, N/k);
13 }
14 // resulting histogram is stored in H[N/k]
15 �} �

6.3

What is the asymptotic work of histogram? Give your answer using Θ-notation in terms of N, k,
and Wps(N), where Wps(N) is the work of prefix sum on N elements.

What is the asymptotic span of the histogram? Give your answer using Θ-notation in terms of
N, k, and Sps(N), where Sps(N) is the span of prefix sum on N elements.

13

6.4

Intel x86 Assembly Language Cheat Sheet
Instruction Effect Example

Data movement
mov src, dest Copy src to dest mov $10,%eax

Arithmetic
add src, dest Dest = dest + src add $10, %esi
mul reg edx:eax = eax * reg (colon means the

result spans across two registers)
mul %esi

div reg
idiv reg

edx = edx:eax mod reg
eax = edx:eax / reg

div %edi

inc dest Increment destination Inc %eax
dec dest Decrement destination dec (%esi)
sbb arg1, arg2 If CF = 1, (this is set by cmp instruction;

refer cmp)
 arg2 = arg2 – (arg1 + 1)
else
 arg2 = arg2 – arg1

sbb %eax, %ebx

Function Calls
call label Push eip, transfer control call _fib
ret Pop eip and return ret
push item Push item (constant or register) to stack pushl $32

pushl %eax
pop [reg] Pop item from stack; optionally store to

register
pop %eax
popl

Bitwise Operations
and src,dest Dest = src & dest and %ebx, %eax
or src, dest Dest = src | dest orl (0x2000), %eax
xor src, dest Dest = src ^ dest xor $0xffffff, %eax
shl count, dest Dest = dest << count shl $2, %eax
shr count, dest Dest = dest >> count shr $4, (%eax)
sal count, dest Same as shl, shifted bits will be the sign

bit
Conditionals and jumps
cmp arg1, arg2 If arg1 > arg2 sets

 CF=1 (carry flag =1)
This compares arg1 and arg2; you can
use any conditionals jumps below to act
upon the result of this comparison

cmp $0, %eax

test reg,imm/reg Bitwise and of register and
constant/register; the next jump command
uses the result of this; consider this
essentially as same as compare

test %rax, %rcx

je label Jump to label if arg2 = arg1 je endloop
jne label Jump to label if arg2 != arg1 jne loopstart
jg label / ja label Jump to label if arg2 > arg1 jg exit / ja exit
jge label Jump to label if arg2 >= arg1 jge format_disk
jl label Jump to label if arg2 < arg1 jl error
jle label Jump to label if arg2 <= arg1 jle finish
jz label Jump to label if bits were not set jz looparound
jnz label Jump to label if bits were set jnz error
jump label Unconditional jump jmp exit
Miscellaneous
nop No-op nop
lea addr, dest Move the address calculated to the dest lea 23(%eax, %ecx,8),%eax
cqto %rdx:%rax← sign-extend of %rax. cqto

suffixes b=byte(8), w=word(16), l=long(32), q=quad(64)
base indexed scale displacement 172(%rdi, %rdx,8) = %rdi + 8 * %rdx + 172
Note that not both src and dest can be memory operands at the same time.
register - %eax fixed address – (0x1000)
constant - $10 dynamic address – (%rsi)

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

