
MITOCW | 12. Parallel Storage Allocation

VOICEOVER: The following content is provided under a Creative Commons license. Your support will help

MIT Open Courseware continue to offer high-quality educational resources for free. To make

a donation or to view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

JULIAN SHUN: Good afternoon, everyone. So today we're going to talk about storage allocation. This is a

continuation from last lecture where we talked about serial storage allocation. Today we'll also

talk a little bit more about serial allocation. But then I'll talk more about parallel allocation and

also garbage collection.

So I want to just do a review of some memory allocation primitives. So recall that you can use

malloc to allocate memory from the heap. And if you call malloc with the size of s, it's going to

allocate and return a pointer to a block of memory containing at least s bytes. So you might

actually get more than s bytes, even though you asked for s bytes. But it's guaranteed to give

you at least s bytes.

The return values avoid star, but good programming practice is to typecast this pointer to

whatever type you're using this memory for when you receive this from the malloc call. There's

also aligned allocation.

So you can do aligned allocation with memalign, which takes two arguments, a size a as well

as a size s. And a has to be an exact power of 2, and it's going to allocate and return a pointer

to a block of memory again containing at least s bytes. But this time this memory is going to be

aligned to a multiple of a, so the address is going to be a multiple of a, where this memory

block starts.

So does anyone know why we might want to do an aligned memory allocation? Yeah?

STUDENT: [INAUDIBLE]

JULIAN SHUN: Yeah, so one reason is that you can align memories so that they're aligned to cache lines, so

that when you access an object that fits within the cache line, it's not going to cross two cache

lines. And you'll only get one cache axis instead of two. So one reason is that you want to align

the memory to cache lines to reduce the number of cache misses.

You get another reason is that the vectorization operators also require you to have memory



You get another reason is that the vectorization operators also require you to have memory

addresses that are aligned to some power of 2. So if you align your memory allocation with

memalign, then that's also good for the vector units. We also talked about deallocations. You

can free memory back to the heap with the free function.

So if you pass at a point of p to some block of memory, it's going to deallocate this block and

return it to the storage allocator. And we also talked about some anomalies of freeing. So what

is it called when you fail to free some memory that you allocated? Yes?

Yeah, so If you fail to freeze something that you allocated, that's called a memory leak. And

this can cause your program to use more and more memory. And eventually your program is

going to use up all the memory on your machine, and it's going to crash.

We also talked about freeing something more than once. Does anyone remember what that's

called? Yeah? Yeah, so that's called double freeing. Double freeing is when you free

something more than once. And the behavior is going to be undefined.

You might get a seg fault immediately, or you'll free something that was allocated for some

other purpose. And then later down the road your program is going to have some unexpected

behavior. OK.

I also want to talk about m map. So m map is a system call. And usually m map is used to treat

some file on disk as part of memory, so that when you write to that memory region, it also

backs it up on disk. In this context here, I'm actually using m map to allocate virtual memory

without having any backing file. So

So our map has a whole bunch of parameters here. The second to the last parameter

indicates the file I want to map, and if I pass a negative 1, that means there's no backing file.

So I'm just using this to allocate some virtual memory.

The first argument is where I want to allocate it. And 0 means that I don't care. The size in

terms of number of bytes has how much memory I want to allocate. Then there's also

permissions. So here it says I can read and write this memory region. s private means that this

memory region is private to the process that's allocating it. And then map anon means that

there is no name associated with this memory region.

And then as I said, negative 1 means that there's no backing file. And the last parameter is just

0 if there's no backing file. Normally it would be an offset into the file that you're trying to map.



But here there's no backing file.

And what m map does is it finds a contiguous unused region in the address space of the

application that's large enough to hold size bytes. And then it updates the page table so that it

now contains an entry for the pages that you allocated. And then it creates a necessary virtual

memory management structures within the operating system to make it so that users

accesses to this area are legal, and accesses won't result in a seg fault.

If you try to access some region of memory without using-- without having OS set these

parameters, then you might get a set fault because the program might not have permission to

access that area. But m map is going to make sure that the user can access this area of virtual

memory. And m map is a system call, whereas malloc, which we talked about last time, is a

library call. So these are two different things. And malloc actually uses m map under the hood

to get more memory from the operating system.

So let's look at some properties of m map. So m map is lazy. So when you request a certain

amount of memory, it doesn't immediately allocate physical memory for the requested

allocation. Instead it just populates the page table with entries pointing to a special 0 page.

And then it marks these pages as read only.

And then the first time you write to such a page, it will cause a page fault. And at that point, the

OS is going to modify the page table, get the appropriate physical memory, and store the

mapping from the virtual address space to physical address space for the particular page that

you touch. And then it will restart the instructions so that it can continue to execute.

You can-- turns out that you can actually m map a terabyte of virtual memory, even on a

machine with just a gigabyte of d ram. Because when you call m map, it doesn't actually

allocate the physical memory. But then you should be careful, because a process might die

from running out of physical memory well after you call m map. Because m map is going to

allocate this physical memory whenever you first touch it. And this could be much later than

when you actually made the call to m map.

So any questions so far? OK. So what's the difference between malloc and m map? So as I

said, malloc is a library call. And it's part of--malloc and free are part of the memory allocation

interface of the heat-management code in the c library.

And the heat-management code uses the available system facilities, including the m map



function to get a virtual address space from the operating system. And then the heat-

management code is going-- within malloc-- is going to attempt to satisfy user requests for

heat storage by reusing the memory that it got from the OS as much as possible until it can't

do that anymore. And then it will go and call m map to get more memory from the operating

system.

So the malloc implementation invokes m map and other system calls to expand the size of the

users heap storage. And the responsibility of malloc is to reuse the memory, such that your

fragmentation is reduced, and you have good temporal locality, whereas the responsibility of

m map is actually getting this memory from the operating system. So any questions on the

differences between malloc and m map?

So one question is, why don't we just call m map up all the time, instead of just using malloc?

Why don't we just directly call m map? Yes.

STUDENT: [INAUDIBLE]

JULIAN SHUN: Yes, so one answer is that you might have free storage from before that you would want to

reuse. And it turns out that m map is relatively heavy weight. So it works on a page granularity.

So if you want to do a small allocation, it's quite wasteful to allocate an entire page for that

allocation and not reuse it.

You'll get very bad external fragmentation. And when you call m map, it has to go through all

of the overhead of the security of the OS and updating the page table and so on. Whereas, if

you use malloc, it's actually pretty fast for most allocations, and especially if you have temporal

locality where you allocate something that you just recently freed.

So your program would be pretty slow if you used m map all the time, even for small

allocations. For big allocations, it's fine. But for small allocations, you should use malloc. Any

questions on m map versus malloc?

OK, so I just want to do a little bit of review on how address translation works. So some of you

might have seen this before in your computer architecture course. So how it works is, when

you access memory location, you access it via the virtual address. And the virtual address can

be divided into two parts, where the lower order bits store the offset, and the higher order bits

store the virtual page number.

And in order to get the physical address associated with this virtual address, the hardware is



going to look up this virtual page number in what's called the page table. And then if it finds a

corresponding entry for the virtual page number in the page table, that will tell us the physical

frame number. And then the physical frame number corresponds to where this fiscal memory

is in d ram. So you can just take the frame number, and then use the same offset as before to

get the appropriate offset into the physical memory frame.

So if the virtual page that you're looking for doesn't reside in physical memory, then a page

fault is going to occur. And when a page fault occurs, either the operating system will see that

the process actually has permissions to look at that memory region, and it will set the

permissions and place the entry into the page table so that you can get the appropriate

physical address. But otherwise, the operating system might see that this process actually

can't access that region memory, and then you'll get a segmentation fault.

It turns out that the page table search, also called a page walk, is pretty expensive. And that's

why we have the translation look, a side buffer or TLB, which is essentially a cache for the

page table. So the hardware uses a TLB to cache the recent page table look ups into this TLB

so that later on when you access the same page, it doesn't have to go all the way to the page

table to find the physical address. It can first look in the TLB to see if it's been recently

accessed.

So why would you expect to see something that it recently has accessed? So what's one

property of a program that will make it so that you get a lot of TLB hits? Yes?

STUDENT: Well, usually [INAUDIBLE] nearby one another, which means they're probably in the same

page or [INAUDIBLE].

JULIAN SHUN: Yeah, so that's correct. So the page table stores pages, which are typically four kilobytes.

Nowadays there are also huge pages, which can be a couple of megabytes. And most of the

accesses in your program are going to be near each other. So they're likely going to reside on

the same page for accesses that have been done close together in time.

So therefore you'll expect that many of your recent accesses are going to be stored in the TLB

if your program has locality, either spatial or temporal locality or both. So how this architecture

works is that the processor is first going to check whether the virtual address you're looking for

is in TLB. If it's not, it's going to go to the page table and look it up.

And then if it finds that there, then it's going to store that entry into the TLB. And then next it's



going to go get this physical address that it found from the TLB and look it up into the CPU

cache. And if it finds it there, it gets it. If it doesn't, then it goes to d ram to satisfy the request.

Most modern machines actually have an optimization that allow you to do TLB access in

parallel with the L1 cache access. So the L1 cache actually uses virtual addresses instead of

fiscal addresses, and this reduces the latency of a memory access.

So that's a brief review of address translation. All right, so let's talk about stacks. So when you

execute a serial c and c++ program, you're using a stack to keep track of the function calls and

local variables that you have to save. So here, let's say we have this invocation tree, where

function a calls Function b, which then returns. And then a calls function c, which calls d,

returns, calls e, returns, and then returns again.

Here are the different views of the stack at different points of the execution. So initially when

we call a, we have a stack frame for a. And then when a calls b, we're going to place a stack

frame for b right below the stack frame of a. So these are going to be linearly ordered.

When we're done with b, then this part of the stack is no longer going to be used, the part for

b. And then when it calls c, It's going to allocate a stack frame below a on the stack. And this

space is actually going to be the same space as what b was using before. But this is fine,

because we're already done with the call to b.

Then when c calls d, we're going to create a stack frame for d right below c. When it returns,

we're not going to use that space any more, so then we can reuse it for the stack frame when

we call e. And then eventually all of these will pop back up.

And all of these views here share the same view of the stack frame for a. And then for c, d,

and e, they all stare share the same view of this stack for c. So this is how a traditional linear

stack works when you call a serial c or c++ program. And you can view this as a serial walk

over the invocation tree.

There's one rule for pointers. With traditional linear stacks is that a parent can pass pointers to

its stack variables down to its children. But not the other way around. A child can't pass a

pointer to some local variable back to its parent. So if you do that, you'll get a bug in your

program. How many of you have tried doing that before? Yeah, so a lot of you.

So let's see why that causes a problem. So if I'm calling-- if I call b, and I pass a pointer to

some local variable in b stack to a, and then now when a calls c, It's going to overwrite the



space that b was using. And if b's local variable was stored in the space that c has now

overwritten, then you're just going to see garbage. And when you try to access that, you're not

going to get the correct value.

So you can pass a pointer to a's local variable down to any of these descendant function calls,

because they all see the same view of a stack. And that's not going to be overwritten while

these descendant function calls are proceeding. But if you pass it the other way, then

potentially the variable that you had a pointer to is going to be overwritten.

So here's one question. If you want to pass memory from a child back to the parent, where

would you allocate it? So you can allocate it on the parent. What's another option? Yes? Yes,

so another way to do this is to allocate it on the heap.

If you allocate it on the heap, even after you return from the function call, that memory is going

to persist. You can also allocate it in the parent's stack, if you want. In fact, some programs

are written that way. And one of the reasons why many c functions require you to pass in

memory to the function where it's going to store the return value is to try to avoid an expensive

heap allocation in the child.

Because if the parent allocates this space to store the result, the child can just put whatever it

wants to compute in that space. And the parent will see it. So then the responsibility is up to

the parent to figure out whether it wants to allocate the memory on the stack or on the heap.

So this is one of the reasons why you'll see many c functions, where one of the arguments is a

memory location where the result should be stored.

OK, so that was the serial case. What happens in parallel? So in parallel, we have what's

called a cactus stack where we can support multiple views of the stack in parallel. So let's say

we have a program where it calls function a, and then a spawns b and c. So b and c are going

to be running potentially in parallel. And then c spawns d and e, which can potentially be

running in parallel.

So for this program, we could have functions b, d and e all executing in parallel. And a cactus

stack is going to allow us to have all of these functions see the same view of this stack as they

would have if this program were executed serially. And the silk runtime system supports the

cactus stack to make it easy for writing parallel programs. Because now when you're writing

programs, you just have to obey the same rules for programming in serial c and c++ with

regards to the stack, and then you'll still get the intended behavior.



And it turns out that there's no copying of the stacks here. So all of these different views are

seeing the same virtual memory addresses for a. But now there is an issue of how do we

implement this cactus stack? Because in the serial case, we could have these later stacks

overwriting the earlier stacks. But in parallel, how can we do this?

So does anyone have any simple ideas on how we can implement a cactus stack? Yes?

STUDENT: You could just have each child's stack start in like a separate stack, or just have references to

the [INAUDIBLE].

JULIAN SHUN: Yeah, so one way to do this is to have each thread use a different stack. And then store

pointers to the different stack frames across the different stacks. There's actually another way

to do this, which is easier. OK, yes?

STUDENT: If the stack frames have a maximum-- fixed maximum size-- then you could put them all in the

same stack separated by that fixed size.

JULIAN SHUN: Yeah, so if the stacks all have a maximum depth, then you could just allocate a whole bunch of

stacks, which are separated by this maximum depth. There's actually another way to do this,

which is to not use the stack. So yes?

STUDENT: Could you memory map it somewhere else-- each of the different threads?

JULIAN SHUN: Yes, that's actually one way to do it. The easiest way to do it is just to allocate it off the heap.

So instead of allocating the frames on the stack, you just do a heap allocation for each of

these stack frames. And then each of these stack frames has a pointer to the parent stack

frame.

So whenever you do a function call, you're going to do a memory allocation from the heap to

get a new stack frame. And then when you finish a function, you're going to pop something off

of this stack, and free it back to the heap. In fact, a lot of early systems for parallel

programming use this strategy of heap-based cactus stacks.

Turns out that you can actually minimize the performance impact using this strategy if you

optimize the code enough. But there is actually a bigger problem with using a heap-based

cactus stack, which doesn't have to do with performance. Does anybody have any guesses of

what this potential issue is? Yeah?



STUDENT: It requires you to allocate the heap in parallel.

JULIAN SHUN: Yeah, so let's assume that we can do parallel heap allocation. And we'll talk about that. So

assuming that we can do that correctly, what's the issue with this approach? Yeah?

STUDENT: It's that you don't know how big the stack is going to be?

JULIAN SHUN: So let's assume that you can get whatever stack frames you need from the heap, so you don't

actually need to put an upper bound on this. Yeah?

STUDENT: We don't know the maximum depth.

JULIAN SHUN: Yeah. So we don't know the maximum depth, but let's say we can make that work. So you

don't actually need to know the maximum depth if you're allocating off the heap. Any other

guesses? Yeah?

STUDENT: Something to do with returning from the stack that is allocated on the heap to one of the

original stacks.

JULIAN SHUN: So let's say we could get that to work as well. So what happens if I try to run some program

using this heap-based cactus stack with something that's using the regular stack? So let's say

I have some old legacy code that was already compiled using the traditional linear stack. So

there's a problem with interoperability here.

Because the traditional code is assuming that, when you make a function call, the stack frame

for the function call is going to appear right after the stack frame for the particular call e

function. So if you try to mix code that uses the traditional stack as well as this heap-based

cactus stack approach, then it's not going to work well together.

One approach is that you can just recompile all your code to use this heap-based cactus

stack. Even if you could do that, even if all of the source codes were available, there are some

legacy programs that actually in the source code, they do some manipulations with the stack,

because they assume that you're using the traditional stack, and those programs would no

longer work if you're using a heap-based cactus stack.

So the problem is interoperability with legacy code. Turns out that you can fix this using an

approach called thread local memory mapping. So one of the students mentioned memory

mapping. But that requires changes to the operating system. So it's not general purpose.



But the heap-based cactus stack turns out to be very simple. And we can prove nice bounds

about it. So besides the interoperability issue, heap-based cactus stacks are pretty good in

practice, as well as in theory. So we can actually prove a space bound of a cilk program that

uses the heap-based cactus stack.

So let's say s 1 is the stack space required by a serial execution of a cilk program. Then the

stack space of p worker execution using a heap-based cactus stack is going to be upper

bounded by p times s 1. So s p is the space for a p worker execution, and that's less than or

equal to p times s 1.

To understand how this works, we need to understand a little bit about how the cilks works

stealing algorithm works. So in the cilk work-stealing algorithm, whenever you spawn

something of work, or that spawns a new task, is going to work on the task that it spawned.

So therefore, for any leaf in the invocation tree that currently exists, there's always going to be

a worker working on it. There's not going to be any leaves in the tree where there's no worker

working on it. Because when a worker spawns a task, it creates a new leaf. But then it works

immediately on that leaf.

So here we have a-- we have a invocation tree. And for all of the leaves, we have a processor

working on it. And with this busy leaves property, we can easily show this space bound. So for

each one of these processors, the maximum stack space it's using is going to be upper

bounded by s 1, because that's maximum stock space across a serial execution that executes

the whole program.

And then since we have p of these leaves, we just multiply s 1 by p, and that gives us an upper

bound on the overall space used by a p worker execution. This can be a loose upper bound,

because we're double counting here. There's some part of this memory that we're counting

more than once, because they're shared among the different processors.

But that's why we have the less than or equal to here. So it's upper bounded by p times s 1.

So this is one of the nice things about using a heap-based cactus stack is that you get this

good space bound. Any questions on the space bound here?

So let's try to apply this theorem to a real example. So this is the divide and conquer matrix

multiplication code that we saw in a previous lecture. So this is-- in this code, we're making

eight recursive calls to a divide and conquer function. Each of size n over 2.



And before we make any of these calls, we're doing a malloc to get some temporary space.

And this is of size order and squared. And then we free this temporary space at the end. And

notice here that the allocations of the temporary matrix obey a stack discipline.

So we're allocating stuff before we make recursive calls. And we're freeing it after, or right

before we return from the function. So all this stack-- all the allocations are nested, and they

follow a stack discipline. And it turns out that even if you're allocating off the heap, if you follow

a stack discipline, you can still use the space bound from the previous slide to upper bound

the p worker space.

OK, so let's try to analyze the space of this code here. So first let's look at what the work and

span are. So this is just going to be review. What's the work of this divide and conquer matrix

multiply? So it's n cubed. So it's n cubed because we have eight solve problems of size n over

2. And then we have to do linear work to add together the matrices.

So our recurrence is going to be t 1 of n is equal to eight times t 1 of n over 2 plus order n

squared. And that solves to order n cubed if you just pull out your master theorem card. What

about the span? So what's the recurrence here? Yeah, so the span t infinity of n is equal to t

infinitive of n over 2 plus a span of the addition. And what's the span of the addition?

STUDENT: [INAUDIBLE]

JULIAN SHUN: No, let's assume that we have a parallel addition. We have nested silk four loops. Right, so

then the span of that is just going of be log n. Since the span of 1 silk four loop is log n and

when you nest them, you just add together the span. So it's going to be t infinity of n is equal

to t infinity of n over 2 plus order log n. And what does that solve to?

Yeah, so it's going to solve to order log squared n. Again you can pull out your master

theorem card, and look at one of the three cases. OK, so now let's look at the space. What's

going to be the recurrence for the space? Yes.

STUDENT: [INAUDIBLE]

JULIAN SHUN: The only place we're generating new space is when we call this malloc here. So they're all

seeing the same original matrix. So what would the recurrence be? Yeah?

STUDENT: [INAUDIBLE]



JULIAN SHUN: Yeah.

STUDENT: [INAUDIBLE]

JULIAN SHUN: So the n square term is right. Do we actually need eight subproblems of size n over 2? What

happens after we finish one of these sub problems? Are we still going to use the space for it?

STUDENT: Yeah, you free the memory after the [INAUDIBLE].

JULIAN SHUN: Right. So you can actually reuse the memory. Because you free the memory you allocated

after each one of these recursive calls. So therefore the recurrence is just going to be s of n

over 2 plus theta n squared. And what does that solve to?

STUDENT: [INAUDIBLE]

JULIAN SHUN: N squared. Right. So here the n squared term actually dominates. You have a decreasing

geometric series. So it's dominated at the root, and you get theta of n squared. And therefore

by using the busy leaves property and the theorem for the space bound, this tells us that on p

processors, the space is going to be bounded by p times n squared.

And this is actually pretty good since we have a bound on this. It turns out that we can actually

prove a stronger bound for this particular example. And I'll walk you through how we can prove

this stronger bound. Here's the order p times n squared is already pretty good. But we can

actually do better if we look internally at how this algorithm is structured.

So on each level of recursion, we're branching eight ways. And most of the space is going to

be used near the top of this recursion tree. So if I branch as much as possible near the top of

my recursion tree, then that's going to give me my worst case space bound. Because the

space is decreasing geometrically as I go down the tree.

So I'm going to branch eight ways until I get to some level k in the recursion tree where I have

p nodes. And at that point, I'm not going to branch anymore because I've already used up all p

nodes. And that's the number of workers I have.

So let's say I have this level k here, where I have p nodes. So what would be the value of k

here? If I branch eight ways how many levels do I have to go until I get to p nodes? Yes.

STUDENT: It's log base 8 of p.



JULIAN SHUN: Yes. It's log base 8 of p. So we have eight, the k, equal p, because we're branching k ways.

And then using some algebra, you can get it so that k is equal to log base 8 of p, which is

equal to log base 2 of p divided by 3. And then at this level k downwards, it's going to

decrease geometrically.

So the space is going to be dominant at this level k. So the space decreases geometrically as

you go down from level k, and also as you go up from level k. So therefore we can just look at

what the space is at this level k here.

So the space is going to be p times the size of each one of these nodes squared. And the size

of each one of these nodes is going to be n over 2 to the log base 2 of p over 3. And then we

square that because we're using n squared temporary space.

So if you solve that, that gives you p to the one-third times n squared, which is better than the

upper bound we saw earlier of order p times n squared. So you can work out the details for

this example. Not all the details are shown on this slide. You need to show that the level k here

actually dominates all the other levels in the recursion tree.

But in general, if you know what the structure of the algorithm, is you can potentially prove a

stronger space bound than just applying the general theorem we showed on the previous

slide. So any questions on this?

OK, so as I said before, the problem with heap-based linkage is that parallel functions fail to

interoperate with legacy and third-party serial binaries. Yes, was there a question?

STUDENT: I actually do have a question.

JULIAN SHUN: Yes.

STUDENT: [INAUDIBLE]

JULIAN SHUN: Yes.

STUDENT: How do we know that the workers don't split along the path of the [INAUDIBLE] instead of

across or horizontal.

JULIAN SHUN: Yes. So you don't actually know that. But this turns out to be the worst case. So if it branches

any other way, the space is just going to be lower. So you have to argue that this is going to

be the worst case, and it's going to be-- intuitively it's the worst case, because you're using



most of the memory near the root of the recursion tree. So if you can get all p nodes as close

as possible to the root, that's going to make your space as high as possible. It's a good

question.

So parallel functions fail to interoperate with legacy and third-party serial binaries. Even if you

can recompile all of this code, which isn't always necessarily the case, you can still have issues

if the legacy code is taking advantage of the traditional linear stack inside the source code. So

our implementation of cilk uses a less space efficient strategy that is interoperable with legacy

code. And it uses a pool of linear stacks instead of a heap-based strategy.

So we're going to maintain a pool of linear stacks lying around. There's going to be more than

p stacks lying around. And whenever a worker tries to steal something, it's going to try to

acquire one of these tasks from this pool of linear tasks. And when it's done, it will return it

back.

But when it finds that there's no more linear stacks in this pool, then it's not going to steal

anymore. So this is still going to preserve the space bound, as long as the number of stocks is

a constant times the number of processors. But it will affect the time bounds of the work-

stealing algorithm. Because now when a worker is idle, it might not necessarily have the

chance to steal if there are no more stacks lying around.

This strategy doesn't require any changes to the operating system. There is a way where you

can preserve the space and the time bounds using thread local memory mapping. But this

does require changes to the operating system. So our implementation of cilk uses a pool of

linear stacks, and it's based on the Intel implementation. OK.

All right, so we talked about stacks, and that we just reduce the problem to heap allocation. So

now we have to talk about heaps. So let's review some basic properties of heap-storage

allocators. So here's a definition.

The allocator speed is the number of allocations and d allocations per second that the

allocator can sustain. And here's a question. Is it more important to maximize the allocator

speed for large blocks or small blocks? Yeah?

STUDENT: Small blocks?

JULIAN SHUN: So small blocks. Here's another question. Why? Yes?



STUDENT: So you're going to be doing a lot of [INAUDIBLE].

JULIAN SHUN: Yes, so one answer is that you're going to be doing a lot more allocations and deallocations of

small blocks than large blocks. There's actually a more fundamental reason why it's more

important to optimize for small blocks. So anybody? Yeah?

STUDENT: [INAUDIBLE] basically not being able to make use of pages.

JULIAN SHUN: Yeah, so that's another reason for small blocks. It's more likely that it will lead to fragmentation

if you don't optimize for small blocks. What's another reason? Yes.

STUDENT: Wouldn't it just take longer to allocate larger blocks anyway? So the overhead is going to be

more noticeable if you have a big overhead when you allocate small blocks versus large

blocks?

JULIAN SHUN: Yeah. So the reason-- the main reason is that when you're allocating a large-- when you're

allocating a block, a user program is typically going to write to all the bytes in the block. And

therefore, for a large block, it takes so much time to write that the allocator time has little effect

on the overall running time.

Whereas if a program allocates many small blocks, the amount of work-- useful work-- it's

actually doing on the block is going to be-- it can be comparable to the overhead for the

allocation. And therefore, all of the allocation overhead can add up to a significant amount for

small blocks.

So essentially for large blocks, you can amortize away the overheads for storage allocation,

whereas for small, small blocks, it's harder to do that. Therefore, it's important to optimize for

small blocks. Here's another definition. So the user footprint is the maximum over time of the

number u of bytes in use by the user program.

And these are the bytes that are allocated and not freed. And this is measuring the peak

memory usage. It's not necessarily equal to the sum of the sizes that you have allocated so

far, because you might have reused some of that. So the user footprint is the peak memory

usage and number of bytes.

And the allocator footprint is the maximum over time of the number of a bytes that the memory

provided to the locator by the operating system. And the reason why the allocator footprint

could be larger than the user footprint, is that when you ask the OS for some memory, it could



give you more than what you asked for. And similarly, if you ask malloc for some amount of

memory, it can also give you more than what you asked for.

And the fragmentation is defined to be a divided by u. And a program with low fragmentation

will keep this ratio as low as possible, so keep the allocator footprint as close as possible to the

user footprint. And in the best case, this ratio is going to be one. So you're using all of the

memory that the operating system allocated.

One remark is that the allocator footprint a usually gross monotonically for many allocators. So

it turns out that many allocators do m maps to get more memory. But they don't always free

this memory back to the OS. And you can actually free memory using something called m

unmap, which is the opposite of m map, to give memory back to the OS. But this turns out to

be pretty expensive.

In modern operating systems, their implementation is not very efficient. So many allocators

don't use m unmap. You can also use something called m advise. And what m advise does is

it tells the operating system that you're not going to be using this page anymore but to keep it

around in virtual memory. So this has less overhead, because it doesn't have to clear this

entry from the page table. It just has to mark that the program isn't using this page anymore.

So some allocators use m advise with the option, don't need, to free memory. But a is usually

still growing monotonically over time, because allocators don't necessarily free all of the things

back to the OS that they allocated.

Here's a theorem that we proved in last week's lecture, which says that the fragmentation for

binned free list is order log base 2 of u, or just order log u. And the reason for this is that

you're can have log-based 2 of u bins. And for each bin it can basically contain u bytes of

storage.

So overall you can use-- overall, you could have allocated u times log u storage, and only be

using u of those bytes. So therefore the fragmentation is order log u.

Another thing to note is that modern 64-bit processors only provide about 2 to 48 bytes of

virtual address space. So this is sort of news because you would probably expect that, for a

64-bit processor, you have to the 64 bytes of virtual address space. But that turns out not to

be the case.

So they only support to the 48 bytes. And that turns out to be enough for all of the programs



that you would want to write. And that's also going to be much more than the physical memory

you would have on a machine. So nowadays, you can get a big server with a terabyte of

memory, or to the 40th bytes of physical memory, which is still much lower than the number of

bytes in the virtual address space.

Any questions? OK, so here's some more definitions. So the space overhead of an allocator is

a space used for bookkeeping. So you could store-- perhaps you could store headers with the

blocks that you allocate to keep track of the size and other information. And that would

contribute to the space overhead

Internal fragmentation is a waste due to allocating larger blocks in the user request. So you

can get internal fragmentation if, when you call malloc, you get back a block that's actually

larger than what the user requested. We saw on the bin free list algorithm, we're rounding up

to the nearest power of 2's.

If you allocate nine bytes, you'll actually get back 16 bytes in our binned-free list algorithm

from last lecture. So that contributes to internal fragmentation. It turns out that not all binned-

free list implementations use powers of 2. So some of them use other powers that are smaller

than 2 in order to reduce the internal fragmentation.

Then there's an external fragmentation, which is the waste due to the inability to use storage

because it's not contiguous. So for example, if I allocated a whole bunch of one byte things

consecutively in memory, then I freed every other byte. And now I want to allocate a 2-byte

thing, I don't actually have contiguous mammary to satisfy that request, because all of my free

memory-- all of my free bytes are in one-bite chunks, and they're not next to each other.

So this is one example of how external fragmentation can happen after you allocate stuff and

free stuff. Then there's blow up. And this is for a parallel locator. The additional space beyond

what a serial locator would require. So if a serial locator requires s space, and a parallel

allocator requires t space, then it's just going to be t over s. That's the blow up.

OK, so now let's look at some parallel heap allocation strategies. So the first strategy is to use

a global heap. And this is how the default c allocator works. So if you just use a default c

allocator out of the box, this is how it's implemented.

It uses a global heap where all the accesses to this global heap are protected by mutex. You

can also use lock-free synchronization primitives to implement this. We'll actually talk about



some of these synchronization primitives later on in the semester. And this is done to preserve

atomicity because you can have multiple threads trying to access the global heap at the same

time. And you need to ensure that races are handled correctly.

So what's the blow up for this strategy? How much more space am I using than just a serial

allocator? Yeah.

STUDENT: [INAUDIBLE]

JULIAN SHUN: Yeah, so the blow up is one. Because I'm not actually using any more space than the serial

allocator. Since I'm just maintaining one global heap, and everybody is going to that heap to

do allocations and deallocations. But what's the potential issue with this approach? Yeah?

STUDENT: Performance hit for that block coordination.

JULIAN SHUN: Yeah, so you're going to take a performance hit for trying to acquire this lock. So basically

every time you do a allocation or deallocation, you have to acquire this lock. And this is pretty

slow, and it gets slower as you increase the number of processors.

Roughly speaking, acquiring a lock to perform is similar to an L2 cache access. And if you just

run a serial allocator, many of your requests are going to be satisfied just by going into the L1

cache. Because you're going to be allocating things that you recently freed, and those things

are going to be residing in L1 cache.

But here, before you even get started, you have to grab a lock. And you have to pay a

performance hit similar to an L2 cache access. So that's bad. And it gets worse as you

increase the number of processors. So the contention increases as you increase the number

of threads. And then you can't-- you're not going to be able to get good scalability.

So ideally, as the number of threads or processors grows, the time to perform an allocation or

deallocation shouldn't increase. But in fact, it does. And the most common reason for loss of

scalability is lock contention.

So here all of the processes are trying to acquire the same lock, which is the same memory

address. And if you recall from the caching lecture, or the multicore programming lecture,

every time you acquire a memory location, you have to bring that cache line into your own

cache, and then invalidate the same cache line in other processors' caches.



So if all the processors are doing this, then this cache line is going to be bouncing around

among all of the processors' caches, and this could lead to very bad performance. So here's a

question. Is lock contention more of a problem for large blocks or small blocks? Yes.

STUDENT: So small blocks.

JULIAN SHUN: Here's another question. Why? Yes.

STUDENT: Because by the time it takes to finish using the small block, then the allocator is usually small.

So you do many allocations and deallocations, which means you have to go through the lock

multiple times.

JULIAN SHUN: Yeah. So one of the reasons is that when you're doing small allocations, that means that your

request rate is going to be pretty high. And your processors are going to be spending a lot of

time acquiring this lock. And this can exacerbate the lock contention.

And another reason is that when you allocate a large block, you're doing a lot of work,

because you have to write-- most of the time you're going to write to all the bytes in that large

block. And therefore you can amortize the overheads of the storage allocator across all of the

work that you're doing.

Whereas for small blocks, in addition to increasing this rate of memory requests, it's also--

there's much less work to amortized to overheads across. So any questions? OK, good.

All right. So here's another strategy, which is to use local heaps. So each thread is going to

maintain its own heap. And it's going to allocate out of its own heap. And there's no locking

that's necessary. So when you allocate something, you get it from your own heap. And when

you free something, you put it back into your own heap. So there's no synchronization

required. So that's a good thing. It's very fast. What's a potential issue with this approach?

Yes.

STUDENT: It's using a lot of extra space.

JULIAN SHUN: Yes, so this approach, you're going to be using a lot of extra space. So first of all, because you

have to maintain multiple heaps. And what's one phenomenon that you might see if you're

executing a program with this local-heap approach? So it's a space-- could the space

potentially keep growing over time? Yes.



STUDENT: You could maybe like allocate every one process [INAUDIBLE].

JULIAN SHUN: Yeah. Yeah, so you could actually have an unbounded blow up. Because if you do all of the

allocations in one heap, and you free everything in another heap, then whenever the first heap

does an allocation, there's actually free space sitting around in another heap. But it's just going

to grab more memory from the operating system. So you're blow up can be unbounded.

And this phenomenon, it's what's called memory drift. So blocks allocated by one thread are

freed by another thread. And if you run your program for long enough, your memory

consumption can keep increasing. And this is sort of like a memory leak.

So you might see that if you have a memory drift problem, your program running on multiple

processors could run out of memory eventually. Whereas if you just run it on a single core, it

won't run out of memory. And here it's because the allocator isn't smart enough to reuse

things in other heaps. So what's another strategy you can use to try to fix this? Yes?

STUDENT: [INAUDIBLE]

JULIAN SHUN: Sorry, can you repeat your question?

STUDENT: [INAUDIBLE]

JULIAN SHUN: Because if you keep allocating from one thread, if you do all of your allocations in one thread,

and do all of your deallocations on another thread, every time you allocate from the first

thread, there's actually memory sitting around in the system. But the first thread isn't going to

see it, because it only sees its own heap. And it's just going to keep grabbing more memory

from the OS.

And then the second thread actually has this extra memory sitting around. But it's not using it.

Because it's only doing the freeze. It's not doing allocate. And if we recall the definition of blow

up is, how much more space you're using compared to a serial execution of a program.

If you executed this program on a single core, you would only have a single heap that does

the allocations and frees. So you're not going to-- your memory isn't going to blow up. It's just

going to be constant over time. Whereas if you use two threads to execute this, the memory

could just keep growing over time. Yes?

STUDENT: [INAUDIBLE]



JULIAN SHUN: So, it just-- so if you remember the binned-free list approach, let's say we're using that. Then

all you have to do is set some pointers in your binned-free lists data structure, as well as the

block that you're freeing, so that it appears in one of the linked lists. So you can do that even if

some other processor allocated that block.

OK, so what what's another strategy that can avoid this issue of memory drift? Yes?

STUDENT: Periodically shuffle the free memory that's being used on different heaps.

JULIAN SHUN: Yeah. So that's a good idea. You could periodically rebalance the memory. What's a simpler

approach to solve this problem? Yes?

STUDENT: Make it all know all of the free memory?

JULIAN SHUN: Sorry, could you repeat that?

STUDENT: Make them all know all of the free memory?

JULIAN SHUN: Yes. So you could have all of the processors know all the free memory. And then every time it

grabs something, it looks in all the other heaps. That does require a lot of synchronization

overhead. Might not perform that well. What's an easier way to solve this problem? Yes.

STUDENT: [INAUDIBLE]

JULIAN SHUN: So you could restructure your program so that the same thread does the allocation and frees

for the same memory block. But what if you didn't want to restructure your program? How can

you change the allocator? So we want the behavior that you said, but we don't want to change

our program. Yes.

STUDENT: You could have a single free list that's protected by synchronization.

JULIAN SHUN: Yeah, so you could have a single free list. But that gets back to the first strategy of having a

global heap. And then you have high synchronization overheads. Yes.

STUDENT: You could have the free map to the thread that it came from or for the pointer that

corresponds to-- that allocated it.

JULIAN SHUN: So you're saying free back to the thread that allocated it? Yes, so that that's exactly right. So

here each object, when you allocate it, it's labeled with an owner. And then whenever you free

it, you return it back to the owner.



So the objects that are allocated will eventually go back to the owner's heap if they're not in

use. And they're not going to be free lying around in somebody else's heap. The advantage of

this approach is that you get fast allocation and freeing of local objects.

Local objects are objects that you allocated. However, free remote objects require some

synchronization. Because you have to coordinate with the other threads' heap that you're

sending the memory object back to. But this synchronization isn't as bad as having a global

heap, since you only have to talk to one other thread in this case.

You can also bound the blow up by p. So the reason why the blow up is upper bounded by p is

that, let's say the serial allocator uses at most x memory. In this case, each of the heaps can

use at most x memory, because that's how much the serial program would have used. And

you have p of these heaps, so overall you're using p times x memory. And therefore the ratio

is upper bounded by p. Yes?

STUDENT: [INAUDIBLE]

JULIAN SHUN: So when you free an object, it goes-- if you allocated that object, it goes back to your own

heap. If your heap is empty, it's actually going to get more memory from the operating system.

It's not going to take something from another thread's heap.

But the maximum amount of memory that you're going to allocate is going to be upper

bounded by x. Because the sequential serial program took that much.

STUDENT: [INAUDIBLE]

JULIAN SHUN: Yeah. So the upper bound for the blow up is p. Another advantage of this approach is that it's

resilience-- it has resilience to false sharing. So let me just talk a little bit about false sharing.

So true sharing is when two processors are trying to access the same memory location.

And false sharing is when multiple processors are accessing different memory locations, but

those locations happen to be on the same cache line. So here's an example. Let's say we

have two variables, x and y. And the compiler happens to place x and y on the same cache

line.

Now, when the first processor writes to x, it's going to bring this cache line into its cache. When

the other processor writes to y, since it's on the same cache line, it's going to bring this cache



line to y's cache. And then now, the first processor writes x, it's going to bring this cache line

back to the first processor's cache.

And then you can keep-- you can see this phenomenon keep happening. So here, even

though the processors are writing to different memory locations, because they happen to be

on the same cache line, the cache line is going to be bouncing back and forth on the machine

between the different processors' caches. And this problem gets worse if more processors are

accessing this cache line.

So in this-- this can be quite hard to debug. Because if you're using just variables on the stack,

you don't actually know necessarily where the compiler is going to place these memory

locations. So the compiler could just happen to place x and y in the same cache block. And

then you'll get this performance hit, even though it seems like you're accessing different

memory locations.

If you're using the heap for memory allocation, you have more knowledge. Because if you

allocate a huge block, you know that all of the memory locations are contiguous in physical

memory. So you can just space your-- you can space the accesses far enough apart so that

different processes aren't going to touch the same cache line.

A more general approach is that you can actually pad the object. So first, you can align the

object on a cache line boundary. And then you pad out the remaining memory locations of the

objects so that it fills up the entire cache line. And now there's only one thing on that cache

line. But this does lead to a waste of space because you have this wasted padding here.

So program can induce false sharing by having different threads process nearby objects, both

on the stack and on the heap. And then an allocator can also induce false sharing in two ways.

So it can actively induce false sharing. And this is when the allocator satisfies memory

requests from different threads using the same cache block.

And it can also do this passively. And this is when the program passes objects lying around in

the same cache line. So different threads, and then the allocator reuses the object storage

after the objects are free to satisfy requests from those different threads. And the local

ownership approach tends to reduce false sharing because the thread that allocates an object

is eventually going to get it back. You're not going to have it so that an object is permanently

split among multiple processors' heaps.



So even if you see false sharing in local ownership, it's usually temporary. Eventually it's

going-- the object is going to go back to the heap that it was allocated from, and the false

sharing is going to go away. Yes?

STUDENT: Are the local heaps just three to five regions in [INAUDIBLE]?

JULIAN SHUN: I mean, you can implement it in various ways. I mean can have each one of them have a

binned-free list allocator, so there's no restriction on where they have to appear in physical

memory. There are many different ways where you can-- you can basically plug-in any serial

locator for the local heap.

So let's go back to parallel heap allocation. So I talked about three approaches already. Here's

a fourth approach. This is called the hoard allocator. And this was actually a pretty good

allocator when it was introduced almost two decades ago. And it's inspired a lot of further

research on how to improve parallel-memory allocation.

So let me talk about how this works. So in the hoard allocator, we're going to have p local

heaps. But we're also going to have a global heap. The memory is going to be organized into

large super blocks of size s. And s is usually a multiple of the page size. So this is the

granularity at which objects are going to be moved around in the allocator.

And then you can move super blocks between the local heaps and the global heaps. So when

a local heap becomes-- has a lot of super blocks that are not being fully used and you can

move it to the global heap, and then when a local heap doesn't have enough memory, it can

go to the global heap to get more memory. And then when the global heap doesn't have any

more memory, then it gets more memory from the operating system.

So this is sort of a combination of the approaches that we saw before. The advantages are

that this is a pretty fast allocator. It's also scalable. As you add more processors, the

performance improves. You can also bound the blow up. And it also has resilience to false

sharing, because it's using local heaps.

So let's look at how an allocation using the hoard allocator works. So let's just assume without

loss of generality that all the blocks are the same size. So we have fixed-size allocation. So

let's say we call malloc in our program. And let's say thread i calls the malloc.

So what we're going to do is we're going to check if there is a free object in heap i that can

satisfy this request. And if so, we're going to get an object from the fullest non-full super block



in i's heap. Does anyone know why we want to get the object from the fullest non-full super

block? Yes.

STUDENT: [INAUDIBLE]

JULIAN SHUN: Right. So when a super block needs to be moved, it's as dense as possible. And more

importantly, this is to reduce external fragmentation. Because as we saw in the last lecture, if

you skew the distribution of allocated memory objects to as few pages, or in this case, as few

super blocks as possible, that reduces your external fragmentation.

OK, so if it finds it in its own heap, then it's going to allocate an object from there. Otherwise,

it's going to check the global heap. And if there's something in the global heap-- so here it

says, if the global heap is empty, then it's going to get a new super block from the OS.

Otherwise, we can get a super block from the global heap, and then use that one.

And then finally we set the owner of the block we got either from the OS or from the global

heap to i, and then we return that free object to the program. So this is how a malloc works

using the hoard allocator. And now let's look at hoard deallocation.

Let use of i be the in use storage in heap i. This is the heap for thread i. And let a sub i be the

storage owned by heap i. The hoard allocator maintains the following invariant for all heaps i.

And the invariant is as follows. So u sub i is always going to be greater than or equal to the

min of a sub i minus 2 times s. Recall s is the super block size. And a sub i over 2.

So how it implements this is as follows. When we call free of x, let's say x is owned by thread i,

then we're going to put x back into heap i, and then we're going to check if the n u storage in

heap i, u sub i is less than the min of a sub i minus 2 s and a sub i over 2.

And what this condition says, if it's true, it means that your heap is, at most, half utilized.

Because if it's smaller than this, it has to be smaller than a sub i over 2. That means there's

twice as much allocated than used in the local heap i. And therefore there must be some

super block that's at least half empty. And you move that super block, or one of those super

blocks, to the global heap.

So any questions on how the allocation and deallocation works? So since we're maintaining

this invariant, it's going to allow us to approve a bound on the blow up. And I'll show you that

on the next slide. But before I go on, are there any questions?



OK, so let's look at how we can bound the blow up of the hoard allocator. So there is actually a

lemma that we're going to use and not prove. The lemma is that the maximum storage

allocated in the global heap is at most a maximum storage allocated in the local heaps. So we

just need to analyze how much storage is allocated in the local heaps. Because the total

amount of storage is going to be, at most, twice as much, since the global heap storage is

dominated by the local heap storage.

So you can prove this lemma by case analysis. And there's the hoard paper that's available on

learning modules. And you're free to look at that if you want to look at how this is proved. But

here I'm just going to use this lemma to prove this theorem, which says that, let u be the user

footprint for a program. And let a be the hoard's allocator footprint.

We have that a as upper bounded by order u plus s p. And therefore, a divided by u, which is

a blowup, is going to be 1 plus order s p divided by u. OK, so let's see how this proof works.

So we're just going to analyze the storage in the local heaps.

Now recall that we're always satisfying this invariant here, where u sub i is greater than the

min of a sub i minus 2 s and a sub i over 2. So the first term says that we can have 2 s on

utilized storage per heap. So it's basically giving two super blocks for free to each heap. And

they don't have to use it. They can basically use it as much as they want.

And therefore, the total amount of storage contributed by the first term is going to be order s p,

because each processor has up to 2 s unutilized storage. So that's where the second term

comes from here. And the second term, a sub i over 2-- this will give us the first-term order u.

So this says that the allocated storage is at most twice the use storage for-- and then if you

sum up across all the processors, then there's a total of order use storage that's allocated.

Because the allocated storage can be at most twice the used storage.

OK, so that's the proof of the blow up for hoard. And this is pretty good. It's 1 plus some lower

order term. OK, so-- now these are some other allocators that people use. So jemalloc is a

pretty popular one. Has a few differences with hoard. It has a separate global lock for each

different allocation size.

It allocates the object with the smallest address among all the objects of the requested size.

And it releases empty pages using m advise, which we talked about-- I talked about earlier.

And it's pretty popular because it has good performance, and it's pretty robust to different



allocation traces. There's also another one called SuperMalloc, which is an up and coming

contender. And it was developed by Bradley Kuszmaul.

Here are some allocator speeds for the allocators that we looked at for our particular

benchmark. And for this particular benchmark, we can see that SuperMalloc actually does

really well. It's more than three times faster than jemalloc, and jemalloc is more than twice as

fast as hoard. And then the default allocator, which uses a global heap is pretty slow, because

it can't get good speed up.

And all these experiments are in 32 threads. I also have the lines of code. So we see that

SuperMalloc actually has very few lines of code compared to the other allocators. So it's

relatively simple. OK so, I also have some slides in Garbage Collection. But since we're out of

time, I'll just put these slides online and you can read them.


