
 
 

   

 

                
              

           
               

               
              

           
            
             

    
            

              
                 

              
  

  

              
              

            
           

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 6.172 
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 12 

Homework 7: Dynamic-Analysis Tools 

[Note: This assignment makes use of AWS and/or Git features which may not be available to 
OCW users.] 

1 Introduction 

Key to understanding and improving the behavior of any system is visibility — the ability to 
know what is going on inside the system. For application and system software, compiler-inserted 
program instrumentation (or simply compiler instrumentation) — where the compiler inserts 
special code into the program-under-test to monitor its execution — has emerged as a popular 
way for programmers to gain visibility into how their programs are operating. In your previous 
assignments, you have already availed yourself of a variety of dynamic-analysis tools, such as 
the Cilksan race detector, Valgrind, AddressSanitizer, Cachegrind, and perf. These tools 
generally operate as shadow computations — executing behind the scenes while the program-
under-test runs. In this homework, you will investigate how to build your own dynamic-
analysis tool using compiler instrumentation. 

Traditionally, to write a dynamic-analysis tool that uses compiler instrumentation, a tool 
writer must modify the source code of the compiler. But modifying a compiler requires sub-
stantial mastery of the compiler’s source code that is beyond the scope of this course. In this 
homework, you will use CSI, a prototype framework supported by the Tapir/LLVM compiler for 
writing dynamic-analysis tools. 

The CSI framework 

CSI aims to simplify many aspects of writing and using tools that employ compiler instrumenta-
tion by providing comprehensive static instrumentation and removing the need for tool writers to 
interact directly with the compiler codebase. Specifically, CSI provides a simple application 
program interface (API) consisting of functions, called hooks, which are automatically inserted 
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throughout the compiled code of the program-under-test. The CSI API exposes generic instru-
mentation points throughout the program-under-test, thereby hiding the complexity of the com-
piler’s codebase from tool writers. 

Using CSI, tool writers insert their own instrumentation into the program-under-test by writ-
ing a library, called a CSI-tool, that defines the semantics of relevant hooks. All unimplemented 
hooks in the CSI-tool default to null behavior. A tool user uses the CSI framework to link the 
compiled CSI-tool with the program-under-test to produce a tool-instrumented executable (TIX). 
When the TIX executes, the program-under-test runs normally, except that whenever a hook is 
invoked, the tool performs its shadow computation. In order to support a wide variety of tools, 
CSI inserts hooks to instrument many events that a tool might care about, for instance, before 
and after a memory access, function entry and function exit, beginning and end of a basic block, 
etc. 

Figure 1 presents CSI-cov, an example tool written using the CSI framework. CSI-cov reports 
code-coverage information for an execution of the TIX of a program-under-test. As the TIX 
executes, CSI-cov records when each basic block runs. When the TIX terminates, CSI-cov reports 
how many times each block was executed, including its location in the source code. The code 
for CSI-cov, shown in Figure 1 in its entirety, is both short and simple.1 In just 40 lines, the CSI 
framework allows this useful compiler-based tool to be implemented as a simple C library. 

CSI targets program points that are visible in LLVM’s intermediate representation (IR). In 
particular, CSI instruments six categories of IR objects: memory loads, memory stores, basic 
blocks, function entry points, function exits, and call instructions. 

The design of the CSI API is centered around two main considerations: (1) to allow for simple 
library-based implementations of a wide-variety of dynamic-analysis tools, and (2) to enable 
tools to run quickly by exploiting standard compiler optimizations and analyses for precision 
and efficiency. To these ends, the CSI API provides four key features: hooks, flat and compact 
CSI ID spaces, forensic tables, and properties. We overview each of the features in turn. 

Flat CSI ID spaces. To each IR object, CSI assigns a CSI ID, an integer identifier for the IR 
object that is unique within its category. At runtime, these ID’s are passed to hooks to identify 
the particular IR object or objects being instrumented. CSI assigns these ID’s in such a way as to 
maintain a flat and compact ID space for each IR-object category, even when translation units 
— components of a program that are separately compiled — are dynamically loaded. These flat 
and compact ID’s greatly simplify tool design by allowing a tool to use simple arrays, rather 
than hash tables, to store information for each IR object. Such arrays are simpler to maintain 
than hash tables, especially in multithreaded programs, and they often perform more efficiently 
than hash tables. 

Hooks. CSI defines two kinds of hooks: initialization hooks and IR-object hooks. The ini-
tialization hooks allow tools to perform actions immediately before main is invoked and when a 
translation unit is loaded. The IR-object hooks allow tools to perform actions before and/or after 
an IR object is executed at runtime. The compiler automatically elides any hooks left undefined 
by the tool writer. 

1This code as written assumes that the program-under-test executes serially. Additional care must be taken for 
allocating, initializing, and accessing block_executed in order for CSI-cov to handle a multithreaded program-under-
test. Thread-safety is an issue that tool writers must address explicitly. 
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01 #include <stdio.h> 
02 #include <stdlib.h> 
03 #include <csi.h> 
04 

long *block_executed = NULL; 
06 csi_id_t num_basic_blocks = 0; 
07 

08 void report() { 
09 csi_id_t num_basic_blocks_executed = 0; 

fprintf(stderr, "CSI-cov report:\n"); 
11 for (csi_id_t i = 0; i < num_basic_blocks; i++) { 
12 if (block_executed[i] > 0) 
13 num_basic_blocks_executed++; 
14 const source_loc_t *source_loc = __csi_get_bb_source_loc(i); 

if (NULL != source_loc) 
16 fprintf(stderr, "%s:%d:%d executed %d times\n", 
17 source_loc->filename, source_loc->line_number, 
18 source_loc->column_number, block_executed[i]); 
19 } 

fprintf(stderr, "Total: %ld of %ld basic blocks executed\n", 
21 num_basic_blocks_executed, num_basic_blocks); 
22 free(block_executed); 
23 } 
24 

void __csi_init() { 
26 atexit(report); 
27 } 
28 

29 void __csi_unit_init(const char * const name, 
const instrumentation_counts_t counts) { 

31 block_executed = (long *)realloc(block_executed, 
32 (num_basic_blocks + counts.num_bb) * 
33 sizeof(long)); 
34 memset(block_executed + num_basic_blocks, 0, counts.num_bb * sizeof(long)); 

num_basic_blocks += counts.num_bb; 
36 } 
37 

38 void __csi_bb_entry(const csi_id_t bb_id, const bb_prop_t prop) { 
39 block_executed[bb_id]++; 

} 

Figure 1: A serial version of the CSI-cov code-coverage tool, which reports the number of times every 
basic block in a TIX is executed. 
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Forensic tables. In addition to hooks for IR objects, the CSI API defines forensic tables which 
store static information created by the compiler. A CSI-tool can access these tables at runtime 
through abstract accessor functions. The prototype CSI implementation in Tapir/LLVM provides 
forensic tables that associate IR objects with locations in the source code, as well as tables that 
specify the number of LLVM IR instructions in each basic block. 

The code of CSI-cov in Figure 1 demonstrates that CSI ID’s, hooks, and forensic tables can 
be used in a tool. CSI-cov maintains a table block_executed, defined in line 5, in which each 
basic block in the TIX has a unique slot indexed by the basic block’s CSI ID. The number of basic 
blocks is stored in the variable num_basic_blocks, defined in line 6. 

The initialization hook __csi_init is invoked before main of the program-under-test is called. 
This hook, defined in lines 25–27, registers the function report, defined in lines 8–23, to run 
when the program terminates. The report function prints out a report summarizing the results 
of the tool’s analysis. For each basic block, report retrieves its source location from CSI’s forensic 
tables using the accessor function __csi_get_bb_source_loc in line 14. It prints the file name, 
the initial source line, and the number of times the basic block has been executed in lines 16–18. 
Finally, report prints the total number of basic blocks executed and the total number of basic 
blocks in the program in lines 20–21. 

The hook __csi_unit_init is invoked whenever a new translation unit is loaded, either stati-
cally or dynamically. The hook is called with the name of the translation unit and a structure that 
provides the number of IR objects in each IR-object category that the translation unit contains. 
CSI-cov defines this hook in lines 29–36 to reallocate the array block_executed to incorporate the 
new basic blocks in lines 31–33, after which it updates the number num_basic_blocks of basic 
blocks in line 35. 

The hook __csi_bb_entry, defined in lines 38–40, is called every time a basic block is executed. 
The hook has two arguments: the CSI ID of the basic block and a “property,” which CSI-cov 
ignores. At runtime, CSI-cov indexes block_executed and increments the counter for that basic 
block. 

Properties. The one key feature of CSI that the CSI-cov example does not illustrate is the 
use of properties. For each IR object, CSI computes a property, which is a compile-time constant 
that encodes the results of standard compiler analyses. The property for a memory operation, 
for example, specifies that the location is guaranteed to be on the stack and has a particular 
alignment. The CSI framework uses properties to optimize the inserted instrumentation. In 
particular, if a CSI-tool branches based on the value of a property, CSI can constant-fold the test 
and optimize the instrumentation accordingly. 

As an example of how a CSI tool might use properties, imagine that a tool writer builds a race 
detector capable of detecting races on shared variables. If she were using conventional compiler 
instrumentation, she could avoid instrumenting locations that could not possibly be involved in a 
race, such as a variable declared const or a variable on the stack whose address does not escape 
the frame. In CSI, the property argument to an IR-object hook can give her access to similar 
specific compile-time information concerning the memory operation being instrumented. 

Figure 2 shows a snippet of the code that the writer of a race-detection tool might produce. 
In defining the hook __csi_before_load, the code safely skips the instrumentation of a load 
if it satisfies certain criteria: it accesses a const value (line 45), it accesses a memory location 
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41 void __csi_before_load(const csi_id_t load_id, 
42 const void *addr, 
43 const int32_t num_bytes, 
44 const load_prop_t prop) { 
45 if (prop.is_const || 
46 prop.is_not_shared || 
47 prop.is_read_before_write_in_bb) 
48 return; 
49 check_race_on_load(addr, num_bytes); 
50 } 

Figure 2: An example memory-load hook for a race detector that uses properties to avoid unnecessary 
instrumentation. 

whose address is not captured and is thus guaranteed not to be shared (line 46), or it reads a 
memory address that is written to within the same basic block without any intervening function 
calls (line 47). Because these conditions are known at compile time, the CSI framework can 
evaluate the condition when it inserts this load hook before each memory load. As a result, the 
CSI framework will preclude the compiler from inserting runtime calls to __csi_before_load 
before loads that satisfy these conditions. The function is analyzed at compile time and executed 
at runtime only when necessary. If a given property holds at link time and a tool branches 
depending on that condition, CSI can constant-fold the test and optimize the instrumentation. 

Architecture of CSI 

At first glance, CSI’s brute-force method of inserting hooks at every salient location in the 
program-under-test seems replete with overheads. For example, the CSI instrumentation of a 
memory operation involves calls to two hooks, one before the operation and one after. If a tool 
does not use these hooks, the cost of the function calls can contribute significantly and unneces-
sarily to runtime overhead. 

The CSI prototype overcomes overheads through the use of modern compiler technology, 
specifically, through the use of link-time optimization (LTO). Conceptually, LTO allows compiler 
optimizations to run when the program’s compiled units are statically linked together, thereby 
allowing the compiler to perform optimizations between these separate units. Because all unim-
plemented hooks in a CSI-tool default to a null behavior, LTO can remove calls to these hooks 
as dead code. Furthermore, LTO can can constant-fold the test and optimize the instrumentation 
based on property values and perform a variety of optimizations on the instrumentation code 
itself. 

From the point of view of the tool writer, CSI works as follows. The tool writer defines 
relevant hooks for her CSI-tool, and then she statically links her tool with a null tool, which 
provides a no-op implementation of every hook. Linking these two tools thus produces a null-
default CSI-tool, where the functions defined in the tool writer’s CSI-tool override the corre-
sponding functions in the null tool, but for hooks not defined in the tool writer’s CSI-tool, the 
null-hook definition defaults. When a tool user statically links a null-default CSI-tool with a 
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program-under-test, LTO automatically elides calls to null hooks during its optimization pass. 

2 Recitation: Analyzing function executions 

In recitation, you will use CSI to develop tools to analyze the execution of functions in a serial 
program. You will first develop a simple tool to measure function coverage, that is, to count 
how many times each function in the program executes. Time permitting, you will then extend 
the function-coverage tool to compute a profile for the program-under-test, which specifies how 
much of the total execution time of the program-under-test is spent in each function. For this 
recitation assignment, refer to Section 4 for documentation on the CSI API. 

The file func-analysis.c provides a boiler-plate for the function-analysis CSI-tool. The check-
off items in this homework will walk you through completing the implementation of this CSI-tool. 

Checkoff Item 1: Add global variables to func-analysis.c for recording the number of 
times each function in the program executes. Add code to the __csi_init and 
__csi_unit_init instrumentation hooks to initialize these global variables. 

Checkoff Item 2: Add a function report to func-analysis.c for outputting the results of 
the analysis. In particular, report should use CSI forensic tables to output the name of each 
function in the program and how many times that function was executed. Register the 
report function to run at program termination by adding the statement atexit(report); to 
__csi_init. 

Checkoff Item 3: Which CSI IR-object hooks should be implemented to observe when each 
function is executed? Implement those IR-object hooks in func-analysis.c to record the 
number of times each function executes. 

Checkoff Item 4: Compile the function-analysis CSI-tool and null tool and instrument 
fib_serial with the function-analysis tool as follows: 

51 $ make CSI=1 FUNCANALYSIS=1 fib_serial 

Finally, run the instrumented fib_serial executable. 
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Checkoff Item 5: Once you have confirmed that function-coverage CSI-tool is working, use 
it to instrument and analyze bzip2. We have already modified the Makefile for bzip2 to 
optionally make use of a specified CSI-tool. Hence, you can instrument bzip2 with your 
function-coverage CSI-tool and test the executable as follows: 

52 $ cd bzip2-1.0.6 
53 $ make test CSI=../func-analysis.o 
54 $ ./bzip2 -z -9 -c ../bzip2-1.0.6.tar > /dev/null 

Checkoff: Demonstrate to a TA that the function-coverage tool correctly counts the number 
of times each function in bzip2 is executed. 

Checkoff: (Time permitting.) Modify the function-coverage tool to profile each function, that 
is, to record the amount of the running time of the program is spent within each function. Try out 
the tool on fib and on bzip2. Make sure the tool doesn’t over-count the time spent in recursive 
functions! Demonstrate to a TA that the profiling tool works. 

3 Homework: Linear-regression analysis 

In this homework, you will write some simple CSI-tools to perform linear-regression analysis. 
Linear regression is a linear approach to modelling the relationship between a scalar dependent 
variable (in this case runtime) and one or more independent variables. The idea behind linear-
regression analysis is to develop a simple, predictive linear model to describe the performance of 
a program. Such a performance model provides guidance for how one can tune the performance 
of a program. There are many possible independent variables in a program that can affect it’s 
running time, including: 

• Lines of code. Some lines of code are more expensive than others. 

• C language primitives. Some primitives are more expensive. Vectorizable instructions can 
make things cheaper. 

• Machine instructions. Some instructions are more expensive than others e.g. square root com-
pared to increment. 

• Machine instructions weighted by their cost. Some instructions vary in cost e.g. a load with a 
cache hit vs. a cache miss. 

• Cache Misses. TLB misses. 

In this homework, we will guess that we can model the time T to run a program as following 
equation: 

T = a · I + b · C , 
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where I is the number of instructions, C is the number of cache misses, and a and b are con-
stant values. Linear-regression analysis involves solving for the constants a and b in this model 
in two steps. First, one accumulates a variety of measurements of the program’s running-time 
and corresponding instruction and cache-miss counts. Given those measurements, one can use 
a program such as gnuplot or Excel to perform a linear-regression fit of this model to the mea-
surements, thereby solving for the constants a and b in the model. The constant a describes the 
cost of an instruction, and the constant b describes the cost of a cache miss in the program. 

This homework uses linear-regression analysis to measure the cost of two short-running pro-
gram events. First, you will measure the cost of a function call. Second, you will measure the cost 
of a cilk_spawn. You will study to programs, fib_serial and fib_cilk, to perform the linear-
regression analyses in this homework. You can compile these programs without instrumentation 
as follows: 

55 $ make fib_serial fib_cilk 

As with the recitation assignment, refer to the documentation of the CSI API in Section 4 when 
writing CSI-tools for this homework. 

Measuring the cost of a function call 

To estimate the cost of a single function call, let us consider the serial recursive exponential-time 
fib function in the file fib_serial.c. This execution of this fib function is comprised of function 
calls and integer arithmetic and logic. Hence, we can model the execution time T of this code 
using the following linear-regression model: 

T = a · I + b · F , (1) 

where I is the number of (non-function-call) instructions, F is the number of function calls, and a 
and b are constants. Using this model, we can estimate the cost of a function call by performing 
a linear-regression analysis to solve for the constants a and b. 

To perform this analysis, we need to observe several measurements of the running-time T of 
different executions of fib that each perform different, uncorrelated numbers of instructions I 
and function calls F. To control the number of instructions and function calls that an execution 
of fib performs, the program fib_serial.c takes two parameters: the nth Fibonacci number to 
compute, and a base-case size, which must be at least 2. The program then computes the nth 
Fibonacci number using an exponential-time recursive routine until fib is recursively called on 
an input value n smaller than the base-case size. At that point, the routine uses a simple loop to 
compute the requested Fibonacci number. 

Write-up 1: Implement a CSI-tool in linreg.c to count the number of LLVM IR instructions 
and function calls that a program execution performs. You can get the number of LLVM IR 
instructions in a basic block using __csi_get_bb_sizeinfo. Use the non-empty-size value 
for the LLVM IR instruction count for a basic block. Submit your CSI-tool for this write-up. 
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Note: The prototype CSI implementation currently contains a bug that affects its 
instrumentation on simple recursive functions, such as fib. To get around this bug, declare 
all counter variables in your tool as volatile. 

One issue with compiler instrumentation is that the instrumentation code can perturb the 
execution of the program-under-test. In particular, a program instrumented with the CSI-tool 
from Write-up 1 will perform more operations than the original uninstrumented program. As a 
result, the instrumented program might run more slowly than the uninstrumented program. 

Write-up 2: Describe your strategy for collecting the necessary measurements to perform 
this linear-regression analysis using timers (e.g., calls to clock_gettime) and the CSI-tool 
from Write-up 1. Your strategy should address the following questions: 

• What inputs will you use to run the program such that the counts of instructions and 
function calls are not highly correlated? 

• How will you measure the running time of the program? What timers will you use? How 
many times will you run the program on each input? How will you aggregate your 
measurements to ensure you have reliable timings (e.g., using min, mean, or median)? 

• How will you accommodate the fact that program instrumentation can perturb the 
running time of the program? 

Now use your CSI-tool from Write-ups 1 and 2 to perform the linear-regression analysis. 

Write-up 3: Following the strategy you outlined in Write-up 2, use timers and the CSI-tool 
from Write-up 1 to collect the running-time measurements and instruction and function-call 
counts for the fib_serial.c program. You can compile the linear-regression CSI-tool and 
instrument fib_serial with it as follows: 

56 $ make CSI=1 LINREG=1 fib_serial 

Use these measurements to perform the linear-regression analysis to solve for constants a 
and b in (1). You can use any data-analysis program you prefer (e.g., gnuplot or Excel) to 
perform the linear-regression fit on the collected measurements. What values does your 
analysis find for the constants a and b? How correlated are the counts of instructions and 
function calls in your measurements? 
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Measuring the cost of a Cilk spawn 

Now you will use linear-regression analysis to measure the cost of a cilk_spawn statement. To 
perform this analysis, consider the Cilk program in fib_cilk.c, which computes Fibonacci num-
bers in exponential time. The serial running time of this program T1 can be modeled using the 
following linear-regression model: 

T1 = a · I + b · S, (2) 

where I is the number of instructions (including serial function calls), S is the number of 
cilk_spawn’s, and a and b are constants. Using this model, one can estimate the cost of a 
cilk_spawn by performing a linear-regression analysis to solve for the constants a and b. For 
this analysis, we are primarily interested in solving for the constant b. 

To solve (2) for the constant b, the fib_cilk.c program can be run using different numbers of 
cilk_spawn statements to compute a particular Fibonacci number. The fib routine in fib_cilk.c 
takes a base-case size along with the value n specifying which Fibonacci number to compute. 
When fib is called on a value of n larger than the base-case size, then the first recursive call to 
fib is spawned using a cilk_spawn. Otherwise this recursive call is called serially. 

Write-up 4: Modify the CSI-tool you implemented in Write-up 1 to additionally count the 
number of cilk_spawns executed by a program-under-test. The prototype CSI framework in 
the Tapir/LLVM compiler inserts the following hook at the point in LLVM’s IR 
corresponding to a cilk_spawn: 

void __csi_detach(const csi_id_t detach_id); 

To simplify the design of your tool, you can assume that you will run the 
program-under-test with CILK_NWORKERS=1. Submit your CSI-tool for this write-up. 

Write-up 5: Mirroring the steps outlined in Write-ups 2 and 3, use the CSI-tool developed in 
Write-up 4 to perform the linear-regression analysis to estimate the cost of a cilk_spawn. 
You can compile the linear-regression CSI-tool and instrument fib_cilk with it as follows: 

03 $ make CSI=1 LINREG=1 fib_cilk 

When taking measurements for this analysis, run the fib_cilk executable using 
CILK_NWORKERS=1. Describe your strategy for taking the necessary timing measurements and 
instruction and cilk_spawn counts. What values does your analysis compute for the 
constant b? How correlated are the counts of instructions and spawns in your 
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04 typedef int64_t csi_id_t; 
05 // Value representing unknown CSI ID 
06 #define UNKNOWN_CSI_ID ((csi_id_t) -1) 
07 

08 typedef struct { 
09 csi_id_t num_func; 
10 csi_id_t num_func_exit; 
11 csi_id_t num_callsite; 
12 csi_id_t num_bb; 
13 csi_id_t num_load; 
14 csi_id_t num_store; 
15 } instrumentation_counts_t; 
16 

17 // Hooks to be defined by tool writer 
18 void __csi_init(); 
19 void __csi_unit_init(const char * const file_name, 
20 const instrumentation_counts_t counts); 

Figure 3: CSI hooks for initialization. 

measurements? Based on the linear-regression analysis from Write-up 3, what is the cost of 
a cilk_spawn in terms of function calls? 

4 Reference: The CSI API 

This section overviews the CSI API implemented in the Tapir/LLVM compiler. The CSI API 
consists of four key features: CSI ID spaces, hooks, properties, and forensic tables. The API 
employs flat and compact CSI ID spaces to identify IR objects. The API provides hooks that 
are invoked for IR objects, as well as hooks for initializing a CSI tool. The API exports results 
of standard compiler analysis through property parameters, allowing the tool writer to avoid 
unnecessary instrumentation. Forensic tables associate IR objects with locations in the source 
code and relate IR objects to each other. This section describes each of these four key features. 

CSI ID’s 

CSI identifies six categories of IR objects: function entries, function exits, basic blocks, call sites, 
loads, and stores. Each IR object is assigned a unique number, called a CSI ID, within each 
category. The CSI ID’s are consecutively numbered from 0 up to 1 less than the number of IR 
objects in the category. A CSI ID has type csi_id_t. 
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21 void __csi_func_entry(const csi_id_t func_id, 
22 const func_prop_t prop); 
23 void __csi_func_exit(const csi_id_t func_exit_id, 
24 const csi_id_t func_id, 
25 const func_exit_prop_t prop); 
26 

27 void __csi_before_call(const csi_id_t callsite_id, 
28 const csi_id_t func_id, 
29 const call_prop_t prop); 
30 void __csi_after_call(const csi_id_t callsite_id, 
31 const csi_id_t func_id, 
32 const call_prop_t prop); 

Figure 4: CSI hooks for functions. 

33 void __csi_bb_entry(const csi_id_t bb_id, 
34 const bb_prop_t prop); 
35 void __csi_bb_exit(const csi_id_t bb_id, 
36 const bb_prop_t prop); 

Figure 5: CSI hooks for basic blocks. 

Tool initialization 

CSI provides two initialization hooks, shown in Figure 3. The global initialization hook __csi_init 
executes exactly once immediately before the program-under-test invokes the main function and 
before it initializes global variables. The unit-initialization hook __csi_unit_init is executed 
once whenever a translation unit is loaded into the TIX, whether statically or dynamically. 

IR object hooks 

CSI provides hooks for the each of the six categories of IR objects it identifies. To provide 
flexibility to tool writers, CSI generally inserts a hook both just before and just after each IR 
object. This flexibility allows, for example, a memory location’s value to be queried before a 
store, after a store, or both. 

Functions are instrumented on entry and exit. The hook __csi_func_entry is invoked at the 
beginning of every instrumented function instance after the function has been entered and ini-
tialized but before any user code has run — in LLVM terminology, at the first insertion point 
of the entry block of the function. The func_id parameter identifies the function being entered 
or exited. Correspondingly, the hook __csi_func_exit is invoked just before the function re-
turns (normally).2 Its parameters include both a function ID func_id and a function-exit ID 
func_exit_id, which allows tool writers to distinguish the potentially multiple exit points from 
a function. 

2We have not yet defined the API for exceptions. 
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37 void __csi_before_load(const csi_id_t load_id, 
38 const void *addr, 
39 const int32_t num_bytes, 
40 const load_prop_t prop); 
41 void __csi_after_load(const csi_id_t load_id, 
42 const void *addr, 
43 const int32_t num_bytes, 
44 const load_prop_t prop); 
45 

46 void __csi_before_store(const csi_id_t store_id, 
47 const void *addr, 
48 const int32_t num_bytes, 
49 const store_prop_t prop); 
50 void __csi_after_store(const csi_id_t store_id, 
51 const void *addr, 
52 const int32_t num_bytes, 
53 const store_prop_t prop); 

Figure 6: CSI hooks for loads and stores. 

The __csi_before_call and __csi_after_call hooks instrument call sites. The callsite_id 
parameter identifies the call site, and the func_id parameter identifies the callee — the function 
being called. It is not possible at compile time to identify with certainty the callee of a call site if 
the callee is called indirectly via a function pointer or if the callee is not instrumented by CSI. In 
these cases, the func_id argument is set to UNKNOWN_CSI_ID, a macro defined by the CSI library, 
as shown in Figure 3. 

Figure 5 shows the two CSI hooks for basic blocks. The hook __csi_bb_entry is called when 
control enters a basic block, and __csi_bb_exit is called just before control leaves the basic block. 
The bb_id parameter identifies the basic block being entered or exited. 

Figure 6 shows the four CSI hooks for memory operations. The hooks __csi_before_load 
and __csi_after_load are called before and after memory loads, respectively, and likewise, 
__csi_before_store and __csi_after_store are called before and after memory stores. The 
argument addr is the location in memory, and num_bytes is the number of bytes loaded or stored. 

Properties 

Every IR-object hook contains a property parameter prop: a bit-field struct that encodes static 
information for optimizing instrumentation. CSI defines a distinct bit-field struct type for ev-
ery IR-object category: func_prop_t, func_exit_prop_t, call_prop_t, bb_prop_t, load_prop_t, 
store_prop_t. In the prototype CSI implementation in Tapir/LLVM, Figures 7 and 8 presents the 
property struct types that have been implemented in the existing CSI prototype. As an example, 
consider the load_prop_t type for loads, which is shown in Figure 8. The property encodes the 
alignment of the load (alignment) — an integer k indicating that the address must be a multiple 
of k — whether the load is volatile (is_volatile), whether the loaded location is guaranteed not 
to be shared (is_not_shared), etc. 
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54 typedef struct { 
55 // The call is indirect. 
56 unsigned may_spawn : 1; 
57 // Pad struct to 64 total bits. 
58 uint64_t _unused : 63; 
59 } func_prop_t; 
60 

61 typedef struct { 
62 // The function might spawn. 
63 unsigned may_spawn : 1; 
64 // Pad struct to 64 total bits. 
65 uint64_t _unused : 63; 
66 } func_exit_prop_t; 
67 

68 typedef struct { 
69 // The function might spawn. 
70 unsigned is_indirect : 1; 
71 // Pad struct to 64 total bits. 
72 uint64_t _unused : 63; 
73 } call_prop_t; 

Figure 7: Definition of the CSI property for function entry points, function exits, and call sites. 

Forensic tables 

In addition to properties, CSI passes information known at compile time through its forensic 
tables. The forensic tables map CSI ID’s to static information associated with the instrumented 
IR objects. CSI encapsulates the tables with a set of accessor functions, which allow the tool writer 
to map IR objects to their source-code locations, such as line numbers and containing file name, 
and to get instruction counts associated with each basic block. Figure 9 presents the accessors 
for the forensic tables implemented in the CSI prototype implementation in Tapir/LLVM. 
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typedef struct { 
// The alignment of the load. 
unsigned alignment : 8; 
// The loaded address is in a vtable. 
unsigned is_vtable_access : 1; 
// The loaded address points to constant data. 
unsigned is_constant : 1; 
// The loaded address is on the stack. 
unsigned is_on_stack : 1; 
// The loaded address cannot be captured. 
unsigned may_be_captured : 1; 
// The loaded address is read before it is written in the same basic block. 
unsigned is_read_before_write_in_bb : 1; 
// Pad struct to 64 total bits. 
uint64_t _unused : 51; 

} load_prop_t; 

typedef struct { 
// The alignment of the store. 
unsigned alignment : 8; 
// The stored address is in a vtable. 
unsigned is_vtable_access : 1; 
// The stored address points to constant data. 
unsigned is_constant : 1; 
// The stored address is on the stack. 
unsigned is_on_stack : 1; 
// The stored address cannot be captured. 
unsigned may_be_captured : 1; 
// Pad struct to 64 total bits. 
uint64_t _unused : 52; 

} store_prop_t; 

Figure 8: Definition of the CSI property for memory loads and memory stores. 
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// Structure for the source-location information of an instrumented IR 
106 // object. 
107 typedef struct { 
108 // The name of the instrumented IR object, such as the name of the 
109 // function. This field is NULL if no name is found. 

char * name; 
111 int32_t line_number; 
112 int32_t column_number; 
113 char * filename; 
114 } source_loc_t; 

116 // Accessors for various CSI forensic tables that associate IR objects 
117 // with locations in the source code. These accessors return NULL 
118 // when given an invalid ID. 
119 const source_loc_t *__csi_get_func_source_loc(const csi_id_t func_id); 

const source_loc_t *__csi_get_func_exit_source_loc(const csi_id_t func_exit_id); 
121 const source_loc_t *__csi_get_bb_source_loc(const csi_id_t bb_id); 
122 const source_loc_t *__csi_get_call_source_loc(const csi_id_t call_id); 
123 const source_loc_t *__csi_get_load_source_loc(const csi_id_t load_id); 
124 const source_loc_t *__csi_get_store_source_loc(const csi_id_t store_id); 

126 // Structure for the count of LLVM IR instructions within a basic 
127 // block. 
128 typedef struct { 
129 // Total LLVM IR instructions. 

int32_t full_ir_size; 
131 // Number of LLVM IR instructions that are implemented with at least 
132 // one instruction in a machine architecture, e.g., no debug 
133 // intrinsic function calls or phi instructions. 
134 int32_t non_empty_size; 

} sizeinfo_t; 
136 

137 const sizeinfo_t *__csi_get_bb_sizeinfo(const csi_id_t bb_id); 

Figure 9: CSI accessor functions for reading forensic tables for source location information and for reading 
the number of LLVM IR instructions in each basic block. 
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