

SPEED
LIMIT∞

PER ORDER OF 6.172

66..117722
PPeerrffoorrmmaannccee
EEnnggiinneeeerriinngg
ooff SSooffttwwaarree
SSyysstteemmss

© 2008-2018 by the MIT 6.172 Lecturers

LLEECCTTUURREE 1122
PPaarraalllleell SSttoorraaggee
AAllllooccaattiioonn
JJuulliiaann SShhuunn

1

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

REVIEW OF MEMORY-
ALLOCATION PRIMITIVES

2

Heap Storage in C
Allocation

f

Aligned allocation

f

Deallocation

f

Heap Storage in C
● Allocation

void* malloc(size_t s);
E fect: Allocate and return a pointer to a block of
memory containing at least s bytes.

● Aligned allocation
void* memalign(size_t a, size_t s);
E fect: Allocate and return a pointer to a block of
memory containing at least s bytes, aligned to a
multiple of a, where a must be an exact power of 2:

0 == ((size_t) memalign(a, s)) % a .
● Deallocation

void free(void *p);
E fect: p is a pointer to a block of memory returned
by malloc() or memalign(). Deallocate the block.

© 2008-2018 by the MIT 6.172 Lecturers
3

Allocating Virtual Memory
The mmap() system call can be used to allocate
virtual memory by memory mapping:

void *p = mmap(0, // Don't care where
size, // #bytes
PROT_READ | PROT_WRITE, // Read/write
MAP_PRIVATE | MAP_ANON, // Private anonymous
-1, // no backing file
0 // offset (N/A)

);

The Linux kernel finds a contiguous, unused region in
the address space of the application large enough to
hold size bytes, modifies the page table, and creates
the necessary virtual-memory management structures
within the OS to make the user’s accesses to this area
“legal” so that accesses won’t result in a segfault.

© 2008-2018 by the MIT 6.172 Lecturers
4

Properties ofProperties of mmap()

● mmap() is lazy. It does not immediately allocate
physical memory for the requested allocation.

● Instead, it populates the page table with entries
pointing to a special zero page and marks the page
as read only.

● The first write into such a page causes a page fault.
● At that point, the OS allocates a physical page,

modifies the page table, and restarts the
instruction.

● You can mmap() a terabyte of virtual memory on a
machine with only a gigabyte of DRAM.

● A process may die from running out of physical
memory well after after the mmap() call.

© 2008-2018 by the MIT 6.172 Lecturers
5

What’s the Difference…What’s the Difference…

…between malloc() and mmap() used in this way?

● The functions malloc() and free() are part of the
memory-allocation interface of the heap-
management code in the C library.

● The heap-management code uses available
system facilities, including mmap(), to obtain
memory (virtual address space) from the kernel.

● The heap-management code within malloc()
attempts to satisfy user requests for heap
storage by reusing freed memory whenever
possible.

● When necessary, the malloc() implementation
invokes mmap() and other system calls to
expand the size of the user’s heap storage.

© 2008-2018 by the MIT 6.172 Lecturers
6

Address Translation

⋮

virtual address physical memory

offset search

physical address
page table

virtual page # offset

frame #

frame 0

frame 1

frame 2

frame 3

page table

frame # offset

If the virtual page does not reside in
physical memory, a page fault occurs.

© 2008-2018 by the MIT 6.172 Lecturers
7

© 2008-2018 by the MIT 6.172 Lecturers © 2008-2018 by the MIT 6.172 Lecturers

Address Translation

virtual page # offset

virtual address

frame # offset

physical address

frame 0

frame 1

frame 2

frame 3

⋮

physical memory

search offset

frame #

page table

Since page-table lookups are costly, the hardware
contains a translation lookaside buffer (TLB) to
cache recent page-table lookups.

8

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

CACTUS STACKS

9

Traditional Linear Stack

An execution of a serial C/C++ program can be
viewed as a serial walk of an invocation tree.

B

A

C

ED

A A

B

A
C

A
C
D

A
C

E

CBA D E

invocation tree views of stack

© 2008-2018 by the MIT 6.172 Lecturers
10

Traditional Linear Stack

Rule for pointers: A parent can pass pointers to its
stack variables down to its children, but not the
other way around.

B

A

C

ED

A A

B

A
C

A
C
D

A
C

E

CBA D E

invocation tree views of stack

© 2008-2018 by the MIT 6.172 Lecturers
11

Cactus Stack

A cactus stack supports multiple views in parallel.

B

A

C

ED

A A

B

A
C

A
C
D

A
C

E

CBA D E

invocation tree views of stack

© 2008-2018 by the MIT 6.172 Lecturers
12

Heap-Based Cactus Stack
A heap-based cactus stack allocates frames off the heap.

A

C

D E

B

© 2008-2018 by the MIT 6.172 Lecturers
13

Space Bound

Theorem. Let S1 be the stack space required by a
serial execution of a Cilk program. The stack space of
a P-worker execution using a heap-based cactus stack
is at most SP ≤ P S1.
Proof. Cilk’s work-stealing
algorithm maintains the
busy-leaves property:
Every active leaf frame has
a worker executing it. ∎

S1

P = 4

© 2008-2018 by the MIT 6.172 Lecturers
14

D&C Matrix Multiplication
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C = A * B
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

double *D = malloc(n * n * sizeof(*D));
assert(D != NULL);
#define n_D n
#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(D,0,0), n_D, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(D,0,1), n_D, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(D,1,0), n_D, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(D,1,1), n_D, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;
m_add(C, n_C, D, n_D, n);
free(D);

}
}

Notice that
allocations of
the temporary
matrix D obey a
stack discipline. double *D = malloc(n * n * sizeof(*D));

free(D);

© 2008-2018 by the MIT 6.172 Lecturers
15

Analysis of D&C Matrix Mult.

We can actually prove a stronger bound.

© 2008-2018 by the MIT 6.172 Lecturers
16

(n/2)2

8 Branch fully (8-
…

Worst-Case Recursion Tree
n2

Worst-Case Recursion Tree

way) until we (n/2)2 (n/2)2

get to a level k 8
with P nodes … (n/2k)2 (n/2k)2 (n/2k)2
and then
branch serially

… from there on.
P nodes

Θ(1) Θ(1) Θ(1)

We have 8k = P, which implies that k = log8P = (lg P)/3.
The cost per level grows geometrically from the root to
level k and then decreases geometrically from level k to
the leaves. Thus, the space is Θ(P(n/2(lg P)/3)2) = Θ(P1/3n2).

© 2008-2018 by the MIT 6.172 Lecturers
17

Interoperability
Problem: With heap-based linkage, parallel functions
fail to interoperate with legacy and third-party serial
binaries. Our implementation of Cilk uses a less
space-efficient strategy that preserves interoperability
by using a pool of linear stacks.

A

CC

D E

B

© 2008-2018 by the MIT 6.172 Lecturers
18

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

BASIC PROPERTIES OF
STORAGE ALLOCATORS

19

Allocator Speed

Definition. speed

Allocator Speed

Definition. Allocator speed is the number of
allocations and deallocations per second that the
allocator can sustain.
Q. Is it more important to maximize allocator

speed for large blocks or small blocks?
A. Small blocks!
Q. Why?
A. Typically, a user program writes all the bytes

of an allocated block. A large block takes so
much time to write that the allocator time has
little effect on the overall runtime. In contrast,
if a program allocates many small blocks, the
allocator time can represent a significant
overhead.

© 2008-2018 by the MIT 6.172 Lecturers
20

Fragmentation
Definition. user footprint

allocator
footprint

fragmentation

Remark

Theorem .

Remark.

Fragmentation
Definition. The user footprint is the maximum over
time of the number U of bytes in use by the user
program (allocated but not freed). The allocator
footprint is the maximum over time of the number A
of bytes of memory provided to the allocator by the
operating system. The fragmentation is F = A/U.

Remark. A grows monotonically for many
allocators.
Theorem (proved in Lecture 11). The fragmentation
for binned free lists is FV = O(lg U). ∎
Remark. Modern 64-bit processors provide about
248 bytes of virtual address space. A big server
might have 240 bytes of physical memory.

© 2008-2018 by the MIT 6.172 Lecturers
21

Fragmentation GlossaryFragmentation Glossary

∙ Space overhead: Space used by the allocator for
bookkeeping.
∙ Internal fragmentation: Waste due to allocating

larger blocks than the user requests.
∙ External fragmentation: Waste due to the inability

to use storage because it is not contiguous.
∙ Blowup: For a parallel allocator, the additional

space beyond what a serial allocator would require.

© 2008-2018 by the MIT 6.172 Lecturers
22

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

PARALLEL ALLOCATION
STRATEGIES

23

Strategy 1: Global Heap

∙Default C allocator.
∙All threads (processors)

share a single heap.
∙Accesses are mediated

by a mutex (or lock-free
synchronization) to
preserve atomicity.

J Blowup = 1.
L Slow — acquiring a

lock is like an L2-cache
access.

L Contention can inhibit
scalability.

global heap

© 2008-2018 by the MIT 6.172 Lecturers
24

ScalabilityScalability
Ideally, as the number of threads (processors)
grows, the time to perform an allocation or
deallocation should not increase.
∙ The most common reason for loss of scalability

is lock contention.
Q. Is lock contention more of a problem for large

blocks or for small blocks?
A. Small blocks!
Q. Why?
A. Typically, a user program writes all the bytes of

an allocated block, making it hard for a thread
allocating large blocks to issue allocation
requests at a high rate. In contrast, if a program
allocates many small blocks in parallel,
contention can be a significant issue.

© 2008-2018 by the MIT 6.172 Lecturers
25

Strategy 2: Local Heaps

∙ Each thread allocates
out of its own heap.
∙No locking is necessary.

J Fast — no
synchronization.

L Suffers from memory
drift: blocks allocated
by one thread are freed
on another ⇒
unbounded blowup.

heap heap heap heap

© 2008-2018 by the MIT 6.172 Lecturers
26

Strategy 3: Local Ownership

∙ Each object is labeled
with its owner.
∙ Freed objects are

returned to the owner’s
heap.

J Fast allocation and
freeing of local
objects.

L Freeing remote
objects requires
synchronization.

K Blowup ≤ P.
J Resilience to false

sharing.
© 2008-2018 by the MIT 6.172 Lecturers

heap heap heap heap

27

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

FALSE SHARING

28

False Sharing Example

…
P P P

Write x

x y
The compiler happens
to place x and y in the
same cache block.

© 2008-2018 by the MIT 6.172 Lecturers
29

False Sharing Example

…
P P P

x y Write y

The compiler happens
to place x and y in the
same cache block.

© 2008-2018 by the MIT 6.172 Lecturers
30

False Sharing Example

…
P P P

x y
Write x

The compiler happens
to place x and y in the
same cache block.

© 2008-2018 by the MIT 6.172 Lecturers
31

False Sharing Example

…
P P P

x y Write y

The compiler happens
to place x and y in the
same cache block.

© 2008-2018 by the MIT 6.172 Lecturers
32

How False Sharing Can OccurHow False Sharing Can Occur
A program can induce false sharing having
different threads process nearby objects.
∙ The programmer can mitigate this problem by

aligning the object on a cache-line boundary and
padding out the object to the size of a cache line, but
this solution can be wasteful of space.

An allocator can induce false sharing in two ways:
∙ Actively, when the allocator satisfies memory

requests from different threads using the same cache
block.

∙ Passively, when the program passes objects lying on
the same cache line to different threads, and the
allocator reuses the objects’ storage after the objects
are freed to satisfy requests from those threads.

© 2008-2018 by the MIT 6.172 Lecturers
33

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

BACK TO PARALLEL
HEAP ALLOCATION

34

The Hoard Allocator

∙ P local heaps.
∙1 global heap.
∙Memory is organized

into large superblocks
of size S.
∙Only superblocks are

moved between the
local heaps and the
global heap.

J Fast.
J Scalable.
J Bounded blowup.
J Resilience to false

sharing.

heap heap heap heap

global heap

heap

© 2008-2018 by the MIT 6.172 Lecturers
35

Hoard Allocation
Assume without loss of generality that all
blocks are the same size (fixed-size allocation).

if (there exists a free object in heap i) {
x = an object from the fullest nonfull superblock in i’s heap;

} else {
if (the global heap is empty) {
B = a new superblock from the OS;

} else {
B = a superblock in the global heap;

}
set the owner of B to i;
x = a free object in B;

}
return x;

x = malloc() on thread i

© 2008-2018 by the MIT 6.172 Lecturers
36

Hoard Deallocation

Let ui be the in-use storage in heap i, and
let ai be the storage owned by heap i.
Hoard maintains the following invariant for
all heaps i:

ui ≥ min(ai - 2S, ai/2),
where S is the superblock size.

free(x), where x is owned by thread i:
put x back in heap i;
if (ui < min(ai - 2S, ai/2)) {

move a superblock that is at least 1/2 empty from
heap i to the global heap;

};

© 2008-2018 by the MIT 6.172 Lecturers
37

Hoard’s Blowup
Lemma.

Theorem.

Proof.

Hoard’s Blowup
Lemma. The maximum storage allocated in
global heap is at most maximum storage
allocated in local heaps.
Theorem. Let U be the user footprint for a
program, and let A be Hoard’s allocator
footprint. We have

A ≤ O(U + SP) ,
and hence the blowup is

A/U = O(1 + SP/U) . ∎

Proof. Analyze storage in local heaps.
Recall that ui ≥ min(ai - 2S, ai/2).
First term: at most 2S unutilized storage per
heap for a total of O(SP).
Second term: allocated storage is at most twice
the used storage for a total of O(U). ∎

© 2008-2018 by the MIT 6.172 Lecturers
38

Other SolutionsOther Solutions
jemalloc is like Hoard, with a few differences:
● jemalloc has a separate global lock for each

different allocation size.
● jemalloc allocates the object with the smallest

address among all objects of the requested size.
● jemalloc releases empty pages using

madvise(p, MADV_DONTNEED, ...) ,
which zeros the page while keeping the virtual
address valid.

● jemalloc is a popular choice for parallel systems
due to its performance and robustness.

SuperMalloc is an up-and-coming contender. (See
paper by Bradley C. Kuszmaul.)

© 2008-2018 by the MIT 6.172 Lecturers
39

Allocator Speeds

Allocator SLOC threads

Allocator Speeds

Allocator SLOC 32 threads
Default 6,281 0.97 M/s
Hoard 16,948 17.1 M/s
jemalloc 22,230 38.2 M/s
SuperMalloc 3,571 131.7 M/s

© 2008-2018 by the MIT 6.172 Lecturers
40

SPEED
LIMIT∞

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers

GARBAGE COLLECTION

41

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage
using BFS with the TO space as the FIFO queue.

TO space

next
allocation

© 2008-2018 by the MIT 6.172 Lecturers
42

Updating PointersUpdating Pointers

Since the FROM address of an object is not generally
equal to the TO address of the object, pointers must
be updated.
∙ When an object is copied to the TO space, store a

forwarding pointer in the FROM object, which
implicitly marks it as moved.

∙ When an object is removed from the FIFO queue in
the TO space, update all its pointers.

© 2008-2018 by the MIT 6.172 Lecturers
43

Example

head tail

FROM

TO

Remove an item from the queue.

© 2008-2018 by the MIT 6.172 Lecturers
44

Example

head tail

FROM

TO

Remove an item from the queue.

© 2008-2018 by the MIT 6.172 Lecturers
45

Example

head tail

FROM

TO

Enqueue adjacent vertices.

© 2008-2018 by the MIT 6.172 Lecturers
46

Example

head tail

FROM

TO

Enqueue adjacent vertices.
Place forwarding pointers in FROM vertices.

© 2008-2018 by the MIT 6.172 Lecturers
47

Example

head tail

FROM

TO

Update the pointers in the removed item to refer
to its adjacent items in the TO space.

© 2008-2018 by the MIT 6.172 Lecturers
48

Example

head tail

FROM

TO

Update the pointers in the removed item to refer
to its adjacent items in the TO space.

© 2008-2018 by the MIT 6.172 Lecturers
49

Types of Garbage Collectors

Stop-the-world collector
• Program pauses once in a while and garbage

collector (GC) does work across all of memory
• High program pause times

Program GC Program GC …

Incremental collector
• Collector cleans up a small part of memory every

time it executes
• Low program pause times

Program GC … Program GC Program GC

© 2008-2018 by the MIT 6.172 Lecturers
50

 Running Collector with ProgramRunning Collector with Program

∙ Incremental version of copying collector.

∙ When it is time to collect, application program and
garbage collector take turns running.

© 2008-2018 by the MIT 6.172 Lecturers
51

Running Collector with Program

FROM

TO

head tail

If an object O already dequeued in BFS gains a
reference to another object O’, the BFS may not
find O’ and it will be freed.

© 2008-2018 by the MIT 6.172 Lecturers
52

Running Collector with Program

FROM

TO

head tail

If an object O already dequeued in BFS gains a
reference to another object O’, the BFS may not
find O’ and it will be freed.

© 2008-2018 by the MIT 6.172 Lecturers
53

Baker’s AlgorithmBaker’s Algorithm
∙ Program follows forward pointer if there is one.

∙ Whenever the program accesses an object not in
the TO space, mark object as explored and copy it
over to the TO space.

∙ Whenever the program allocates an object, put it in
the TO space.

∙ Requires a read barrier to intercept every read with
a check, which is expensive.

∙ This algorithm is conservative in that it does not
necessarily collect all garbage. Why?

© 2008-2018 by the MIT 6.172 Lecturers
54

Nettles-O’Toole AlgorithmNettles-O’Toole Algorithm
∙ Program works only in FROM space until garbage

collection is finished.

∙ Replicates the objects by keeping mutations to
FROM-space objects in a log.

∙ Garbage collector applies the mutations to
corresponding TO-space objects.

∙ Requires a write barrier to log mutations on every
write
∙ This is expensive, but writes are usually much

less frequent than reads.

∙ Is this algorithm conservative?
© 2008-2018 by the MIT 6.172 Lecturers

55

Garbage Collection GlossaryGarbage Collection Glossary

∙ Stop-the-world: Garbage collector does all of its
work across memory while pausing program.
∙ Incremental: Garbage collector runs incrementally,

allowing pause times to be bounded.
∙ Parallel: Multiple collector threads are running

simultaneously.
∙ Concurrent: At least one program thread and one

collector thread are running simultaneously.

© 2008-2018 by the MIT 6.172 Lecturers
56

Parallel and Concurrent GCParallel and Concurrent GC
∙ Based on Nettles-O’Toole algorithm

∙ High-level idea
∙ Use per-processor local stacks for search

∙ Maintain a shared stack for load balancing
∙ Processors periodically transfer objects between

local and shared stack

∙ Use synchronization primitives (test-and-set and
fetch-and-add) to manage concurrent accesses

See “On Bounding Time and Space for Multiprocessor Garbage
Collection” (PLDI 1999), and “A Parallel, Real-Time Garbage
Collector” (PLDI 2001) by Cheng and Blelloch

© 2008-2018 by the MIT 6.172 Lecturers
57

SummarySummary

∙ malloc() vs. mmap()

∙ Cactus stacks

∙ Cilk space bound of SP ≤ P S1 and better bound for
matrix multiply

∙ Parallel allocation strategies: global heap, local
heaps, local ownership

∙ Incremental garbage collection

∙ Parallel and concurrent garbage collection

© 2008-2018 by the MIT 6.172 Lecturers
58

 MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

59

https://ocw.mit.edu/terms
https://ocw.mit.edu

