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LECTURE 10 
MEASUREMENT AND TIMING 

Charles E. Leiserson 
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#include <stdio.h> 

#include <time.h> 

void my_sort(double *A, int n); 

void fill(double *A, int n); 

struct 

int main

double tdiff = (end.tv_sec - start.tv_sec) 

+ 1e-9*(end.tv_nsec - start.tv_nsec);

printf("size %d, time %f\n", n, tdiff); 

} 

return 0; 

} 
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Inspired by a study 
due to Sivan Toledo. 
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timespec start, end; 

() { 

= 4*1000*1000; 

= 1; 

= 20 * 1000; 

[max]; 

 n=min; n<max; n+=step){ 

fill(A, n); 

clock_gettime(CLOCK_MONOTONIC, &start); 

my sort(A, n); 

clock_gettime(CLOCK_MONOTONIC, &end); 

Auxiliary routine for filling 
array with random numbers. 

Timing a Code for Sorting 

int max 

int min 

int step 

double A

for (int

Library for clock_gettime()

Sorting routine to be timed. 

Used by clock_gettime(): 
struct timespec { 

time_t tv_sec; /* seconds */ 

long tv_nsec; /* nanoseconds */ 

}; 



Timing a Code for Sorting 
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#include <stdio.h> 

#include <time.h> 

void my_sort(double *A, int n); 

void fill(double *A, int n); 

struct timespec start, end; 

int main() { 

int max = 4 * 1000 * 1000; 

int min = 500 * 1000; 

int step = 20 * 1000; 

double A[max]; 

for (int n=min; n<max; n+=step){ 

fill(A, n); 

clock_gettime(CLOCK_MONOTONIC, &start); 

my sort(A, n); 

clock_gettime(CLOCK_MONOTONIC, &end); 

double tdiff = (end.tv_sec - start.tv_sec) 

+ 1e-9*(end.tv_nsec - start.tv_nsec);

printf("size %d, time %f\n", n, tdiff); 

} 

return 0; 

} 

Loop over arrays of 
increasing length. 

Measure time before sorting. 

Sort. 

Measure time after sorting. 

Compute 
elapsed time. 
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Running Times for Sorting 

array size n What is 
going on? 
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Dynamic Frequency and Voltage Scaling 

DVFS is a technique to reduce power by adjusting the 
clock frequency and supply voltage to transistors. 
• Reduce operating frequency if chip is too hot or

otherwise to conserve (especially battery) power.
• Reduce voltage if frequency is reduced.

C = dynamic capacitance 

Power ∝ C V2 f 

≈ roughly area × activity (how many bits toggle) 
V = supply voltage 
f = clock frequency 

Reducing frequency and voltage results 
in a cubic reduction in power (and heat). 

But it wreaks havoc on performance measurements! 
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Today’s Lecture 

How can one reliably measure 
the performance of software? 
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Genichi Taguchi and Quality 
Question: If you were an Olympic pistol coach, which 

shooter would you recruit for your team? 
Answer: B, because you just need to teach B to 

shoot lower and to the left. 

A B 

Performance-engineering lesson
If you can reduce variability, you 
can compensate for systematic 
and random measurement errors. 
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Sources of Variability 

• Daemons and
background jobs

• Interrupts
• Code and data alignment
• Thread placement
• Runtime scheduler

• Hyperthreading
• Multitenancy
• Dynamic voltage and

frequency scaling (DVFS)
• Turbo Boost
• Network traffic

© 2008–2018 by the MIT 6.172 Lecturers 
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Unquiesced System 
Experiment (joint work with Tim Kaler) 
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading on, Turbo Boost on
• 18 Cilk workers
• 100 runs, each about 1 second
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Quiesced System 
Experiment (joint work with Tim Kaler) 
! Cilk program to count the primes in an interval
! AWS c4 instance (18 cores)
! 2-way hyperthreading off, Turbo Boost off
! 18 Cilk workers
! 100 runs, each about 1 second
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Quiescing the System 

• Make sure no other jobs are running.
• Shut down daemons and cron jobs.
• Disconnect the network.
• Don’t fiddle with the mouse!
• For serial jobs, don’t run on core 0, where interrupt

handlers are usually run.
• Turn hyperthreading off.
• Turn off DVFS.
• Turn off Turbo Boost.
• Use taskset to pin Cilk workers to cores.
• Etc., etc. (Already done for you with awsrun.)

© 2008–2018 by the MIT 6.172 Lecturers 
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Code Alignment 

A small change to one place in the source code can 
cause much of the generated machine code to change 
locations. Performance can vary due to changes in 
cache alignment and page alignment. 
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Similar: Changing the order in 
which the *.o files appear on 
the linker command line can 
have a larger effect than going 
between –O2 to –O3. 

cache and page
alignment has 
changed 
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LLVM Alignment Switches 

LLVM tends to cache-align functions, but it also 
provides several compiler switches for controlling 
alignment: 
• -align-all-functions=<uint>

• Force the alignment of all functions.
• -align-all-blocks=<uint>

• Force the alignment of all blocks in the function.
• -align-all-nofallthru-blocks=<uint>

• Force the alignment of all blocks that have no fall-through
predecessors (i.e. don't add nops that are executed).

Aligned code is more likely to avoid performance 
anomalies, but it can also sometimes be slower. 

© 2008–2018 by the MIT 6.172 Lecturers 
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Data Alignment 

A program’s name can affect its speed! 
• [Mytkowicz, Diwan, Hauswirth, and Sweeney, “Producing wrong

data without doing anything obviously wrong,” 2009.]

• The executable’s name ends up in an environment
variable.

• Environment variables end up on the call stack.
• The length of the name affects the stack alignment.
• Data access slows when crossing page boundaries.

© 2008–2018 by the MIT 6.172 Lecturers 
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Ways to Measure a Program 
• Measure the program externally.

• /usr/bin/time

• Instrument the program.
• Include timing calls in the program.
• E.g., gettimeofday(), clock_gettime(), rdtsc().
• By hand, or with compiler support.

• Interrupt the program.
• Stop the program, and look at its internal state.

• E.g., gdb, Poor Man’s Profiler, gprof.

• Exploit hardware and operating systems support.
• Run the program with counters maintained by the hardware

and operating system, e.g., perf.

• Simulate the program.
• E.g., cachegrind.

© 2008–2018 by the MIT 6.172 Lecturers 
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/usr/bin/time 

The time command can measure elapsed time, user 
time, and system time for an entire program. 
What does that mean? 

real 0m3.502s 
user 0m0.023s 
sys 0m0.005s 

∙ real is wall-clock time.
∙ user is the amount of processor time spent in

user-mode code (outside the kernel) within the
process.

∙ sys is the amount of processor time spent in the
kernel within the process.

© 2008–2018 by the MIT 6.172 Lecturers 
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clock_gettime(CLOCK_MONOTONIC, …) 

#include <time.h> 

struct timespec start, end; 

clock_gettime(CLOCK_MONOTONIC, &start); 

function_to_measure(); 

clock_gettime(CLOCK_MONOTONIC, &end); 

double tdiff = (end.tv_sec - start.tv_sec) 

+ 1e-9*(end.tv_nsec - start.tv_nsec);

! On my laptop, clock_gettime(CLOCK_MONOTONIC, …)
takes about 83ns.

! That’s about two orders of magnitude faster than a
system call.

! clock_gettime(CLOCK_MONOTONIC, …) guarantees never
to run backwards.
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rdtsc()

x86 processors provide a time-stamp counter (TSC) 
in hardware. You can read TSC as follows: 

static __inline__ unsigned long long rdtsc(void)
{

unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ( ((unsigned long long)lo)

| (((unsigned long long)hi)<<32));
}

! The time returned is “clock cycles since boot.”
! rdtsc() runs in about 32ns.
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Don’t Use Lousy Timers! 

• rdtsc() may give different answers on different
cores on the same machine.

• TSC sometimes runs backwards.
• The counter may not progress at a constant speed.
• Converting clock cycles to seconds can be ... tricky.
• Don’t use rdtsc()!
• And don’t use gettimeofday(), either, because it has

similar problems!

© 2008–2018 by the MIT 6.172 Lecturers 
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Interrupting 

• IDEA: Run your program under gdb, and type
control-C at random intervals.

• Look at the stack each time to determine which
functions are usually being executed.

• Who needs a fancy profiler?
• Some people call this strategy the “Poor Man’s

Profiler.”
• pmprof and gprof automate this strategy to provide

profile information for all your functions.
• Neither is accurate if you don’t obtain enough

samples. (gprof samples only 1OO times per
second.)

© 2008–2018 by the MIT 6.172 Lecturers 
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Hardware Counters 

• libpfm4 virtualizes all the hardware counters
• Modern kernels make it possible for libraries such

as libpfm4 to measure all the provided hardware
event counters on a per-process basis.

• perf stat employs libpfm4.
• There are many esoteric hardware counters. Good

luck figuring out what they all measure.
• Watch out: You probably cannot measure more

than 4 or 5 counters at a time without paying a
penalty in performance or accuracy.

© 2008–2018 by the MIT 6.172 Lecturers 
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Simulation 

• Simulators, such as cachegrind, usually run much
slower than real time.

• But they can deliver accurate and repeatable
performance numbers.

• If you want a particular statistic, you can go in
and collect it without perturbing the simulation.

© 2008–2018 by the MIT 6.172 Lecturers 
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Basic Performance-Engineering Workflow 

1.Measure the performance of Program A.
2.Make a change to Program A to produce

a hopefully faster Program A!.
3.Measure the performance of Program A!.
4. If A! beats A, set A = A!.
5. If A is still not fast enough, go to Step 2.

If you can’t measure performance reliably, it is 
hard to make many small changes that add up. 

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
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Problem 

Suppose that you measure the performance of a 
deterministic program 100 times on a computer with 
some interfering background noise. What statistic 
best represents the raw performance of the software? 
• arithmetic mean
• geometric mean
• median
• maximum
• minimum

© 2008–2018 by the MIT 6.172 Lecturers 
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Problem 

Suppose that you measure the performance of a 
deterministic program 100 times on a computer with 
some interfering background noise. What statistic 
best represents the raw performance of the software? 
• arithmetic mean
• geometric mean
• median
• maximum
•✓minimum

Minimum does the best at noise rejection, because 
we expect that any measurements higher than the 
minimum are due to noise. 
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Selecting among Summary Statistics 
Service as many requests 
as possible 
∙ Arithmetic mean
∙ CPU utilization

All tasks are completed 
within 10 ms 
∙ Arithmetic mean
∙ Wall-clock time

Most service requests are 
satisfied within 100 ms 
∙ 90th percentile
∙ Wall clock time

Meet a customer service-
level agreement (SLA) 
∙ Some weighted combination
∙ multiple

Fit into a machine with 
100 MB of memory 
∙ Maximum
∙ Memory use

Least cost possible 
∙ Arithmetic mean
∙ Energy use or CPU utilization

Fastest/biggest/best 
solution 
∙ Arithmetic mean
∙ Speedup of wall clock time

© 2008–2018 by the MIT 6.172 Lecturers 
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Summarizing Ratios 

    

  

     
Conclusion 
Program B is > 3 times better than A. 

WRONG! 
© 2008–2018 by the MIT 6.172 Lecturers 
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Trial Program A Program B A/B 

Mean 7.25 6.75 3.03 

1 9 3 3.00 

2 8 2 4.00 

3 2 20 0.10 

4 10 2 5.00 



Turn the Comparison Upside-Down 

Trial Program A Program B A/B B/A 

Mean 7.25 6.75 3.03 2.70 

    

  

         
     

    
      

Paradox 
If we look at the ratio B/A, then A is 
better by a factor of almost 3. 
Observation 
The arithmetic mean of A/B is NOT the 
inverse of the arithmetic mean of B/A. 

© 2008–2018 by the MIT 6.172 Lecturers 
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1 9 3 3.00 0.33 

2 8 2 4.00 0.25 

3 2 20 0.10 10.00 

4 10 2 5.00 0.20 



Geometric Mean 

Trial Program A Program B A/B B/A 

Mean (a) 7.25 (a) 6.75 (g) 1.57 (g) 0.64

    

  

   
    

Formula 
P ম��P � అn ভః CK C�C� ੈ CP

K�� 

Observation 
The geometric mean of A/B IS the inverse 
of the geometric mean of B/A. 

© 2008–2018 by the MIT 6.172 Lecturers 
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1 9 3 3.00 0.33 

2 8 2 4.00 0.25 

3 2 20 0.10 10.00 

4 10 2 5.00 0.20 



    

 

         
        

        

   
    

    
  

     
        
   

  

        

Comparing Two Programs 

Q. You want to know which of two programs, A and B,
is faster, and you have a slightly noisy computer on
which to measure their performance. What is your
strategy?

A. Perform n head-to-head comparisons between A
and B, and suppose A wins more frequently.
Consider the null hypothesis that B beats A, and
calculate the P-value: “If B beats A, what is the
probability that we’d observe that A beats B more
often than we did?” If the P-value is low, we can
accept that A beats B.

(See Statistics 101.) 

NOTE: With a lot of noise, we need lots of trials. 

© 2008–2018 by the MIT 6.172 Lecturers 
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Fitting to a Model 

Suppose that I have gathered this data: 
Program Time (s) Instructions Cache misses 

    

  

      
  

        
        

     

    
    

python 34864 170889186565542 36615004052 

java 2618 7509707536406 39322034007 

C gcc -O0 1480 2274589361551 68047140354 

C gcc -O3 430 278479001783 34049504541 

I want to infer how long it takes to run an 
instruction and how long to take a cache miss. 

I guess that I can model the runtime T as 
T = a⋅I + b⋅C , 

where 
• I is the number of instructions, and
• C is the number of cache misses.

© 2008–2018 by the MIT 6.172 Lecturers 
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Least-Squares Regression 

A least-squares regression can fit the data to the 
model 

T = a⋅I + b⋅C , 
yielding 

• a = 0.2002 ns
• b = 18.00 ns

with R2 = 0.9997, which means that 99.97% of the 
data is explained by the model. 
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Issues with Modeling 

Adding more basis functions to the model improves 
the fit, but how do I know whether I’m overfitting? 
• Removing a basis function doesn’t affect the quality much.
Is the model predictive? 
• Pick half the data at random.
• Use that data to find the coefficients.
• Using those coefficients, fid out how well the model predicts

the other half of the data.
How can I tell whether I’m fooling myself? 
• Triangulate.
• Check that different ways of measuring tell a consistent

story.
• Analogously to a spreadsheet, make sure the sum of the row

sums adds up to the sum of the column sums.
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