
!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"

!"#$%&
'()*+),-./(&
0.12.(()2.1&
+*&3+*45-)(&
3674(,7&

3'008&
9:;:<&

'0=&>=80=&>?&!"#$%&
!

LECTURE 10
MEASUREMENT AND TIMING

Charles E. Leiserson

1

#include <stdio.h>

#include <time.h>

void my_sort(double *A, int n);

void fill(double *A, int n);

struct

int main

double tdiff = (end.tv_sec - start.tv_sec)

+ 1e-9*(end.tv_nsec - start.tv_nsec);

printf("size %d, time %f\n", n, tdiff);

}

return 0;

}

2

Inspired by a study
due to Sivan Toledo.

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"

timespec start, end;

() {

= 4*1000*1000;

= 1;

= 20 * 1000;

[max];

 n=min; n<max; n+=step){

fill(A, n);

clock_gettime(CLOCK_MONOTONIC, &start);

my sort(A, n);

clock_gettime(CLOCK_MONOTONIC, &end);

Auxiliary routine for filling
array with random numbers.

Timing a Code for Sorting

int max

int min

int step

double A

for (int

Library for clock_gettime()

Sorting routine to be timed.

Used by clock_gettime():
struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

Timing a Code for Sorting

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"

#include <stdio.h>

#include <time.h>

void my_sort(double *A, int n);

void fill(double *A, int n);

struct timespec start, end;

int main() {

int max = 4 * 1000 * 1000;

int min = 500 * 1000;

int step = 20 * 1000;

double A[max];

for (int n=min; n<max; n+=step){

fill(A, n);

clock_gettime(CLOCK_MONOTONIC, &start);

my sort(A, n);

clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)

+ 1e-9*(end.tv_nsec - start.tv_nsec);

printf("size %d, time %f\n", n, tdiff);

}

return 0;

}

Loop over arrays of
increasing length.

Measure time before sorting.

Sort.

Measure time after sorting.

Compute
elapsed time.

3

Running Times for Sorting

array size n What is
going on?

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
4

0.5e5 1e6 1.5e6 2e6 2.5e6 3e6 3.5e6 4e6

60

50

40

30

20

10

0 Ru
nn

in
g

ti
m

e
(s

ec
on

ds
)

–10
0

Measured running time
Best fit to c1 · n lg n
Best fit to c2 ! n

60

50

40

30

20

10

0

10

Measured running time
Best fit to c1 · n lg n
Best fit to c2 ! n

!
"

"

Dynamic Frequency and Voltage Scaling

DVFS is a technique to reduce power by adjusting the
clock frequency and supply voltage to transistors.
• Reduce operating frequency if chip is too hot or

otherwise to conserve (especially battery) power.
• Reduce voltage if frequency is reduced.

C = dynamic capacitance

Power ∝ C V2 f

≈ roughly area × activity (how many bits toggle)
V = supply voltage
f = clock frequency

Reducing frequency and voltage results
in a cubic reduction in power (and heat).

But it wreaks havoc on performance measurements!

© 2008–2018 by the MIT 6.172 Lecturers
5

Today’s Lecture

How can one reliably measure
the performance of software?

© 2008–2018 by the MIT 6.172 Lecturers
6

OUTLINE
! QUIESCING SYSTEMS
! TOOLS FOR MEASURING
SOFTWARE PERFORMANCE

! PERFORMANCE MODELING

!"##$*
%&'&(*

"#)*+)$#)*+,*-./01*
!

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
7

OUTLINE
! QUIESCING SYSTEMS
! TOOLS FOR MEASURING
SOFTWARE PERFORMANCE

! PERFORMANCE MODELING

!"##$*
%&'&(*

"#)*+)$#)*+,*-./01*
!

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
8

Genichi Taguchi and Quality
Question: If you were an Olympic pistol coach, which

shooter would you recruit for your team?
Answer: B, because you just need to teach B to

shoot lower and to the left.

A B

Performance-engineering lesson
If you can reduce variability, you
can compensate for systematic
and random measurement errors.

© 2008–2018 by the MIT 6.172 Lecturers
9

Sources of Variability

• Daemons and
background jobs

• Interrupts
• Code and data alignment
• Thread placement
• Runtime scheduler

• Hyperthreading
• Multitenancy
• Dynamic voltage and

frequency scaling (DVFS)
• Turbo Boost
• Network traffic

© 2008–2018 by the MIT 6.172 Lecturers
10

Unquiesced System
Experiment (joint work with Tim Kaler)
• Cilk program to count the primes in an interval
• AWS c4 instance (18 cores)
• 2-way hyperthreading on, Turbo Boost on
• 18 Cilk workers
• 100 runs, each about 1 second

25%

20%

Pe
rc

en
t

ab
ov

e
M

in
im

um

Performance Rank of Run

© 2008–2018 by the MIT 6.172 Lecturers
11

15%

10%

5%

0%
0 10 20 30 40 50 60 70 80 90

Quiesced System
Experiment (joint work with Tim Kaler)
! Cilk program to count the primes in an interval
! AWS c4 instance (18 cores)
! 2-way hyperthreading off, Turbo Boost off
! 18 Cilk workers
! 100 runs, each about 1 second

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%

Pe
rc

en
t

ab
ov

e
M

in
im

um

0 10 20 30 40 50 60 70 80 90
Performance

12
Rank of Run

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"

Quiescing the System

• Make sure no other jobs are running.
• Shut down daemons and cron jobs.
• Disconnect the network.
• Don’t fiddle with the mouse!
• For serial jobs, don’t run on core 0, where interrupt

handlers are usually run.
• Turn hyperthreading off.
• Turn off DVFS.
• Turn off Turbo Boost.
• Use taskset to pin Cilk workers to cores.
• Etc., etc. (Already done for you with awsrun.)

© 2008–2018 by the MIT 6.172 Lecturers
13

Code Alignment

A small change to one place in the source code can
cause much of the generated machine code to change
locations. Performance can vary due to changes in
cache alignment and page alignment.

!"!"!"!"#
!"!!"!!!#
"!!!"!!"#
"""!!"!"#
!"!"!!""#
!"!!"!!!#
"!!!!!""#
"""!""!!#
!!!!"!!!#
"!!!"!!"#
!"""""!"#
""""!"!!#
"!!!!!""#
!"""""!"#
""""!"!!#
!!!!!!!"#
!"""""""#

!"!"!"!"#
!"!!"!!!#
"!!!"!!"#
"""!!"!"#
"!""!!!"#
!"!"!!""#
!"!!"!!!#
"!!!!!""#
"""!""!!#
!!!!"!!!#
"!!!"!!"#
!"""""!"#
""""!"!!#
"!!!!!""#
!"""""!"#
""""!"!!#
!!!!!!!"#
!"""""""#

Similar: Changing the order in
which the *.o files appear on
the linker command line can
have a larger effect than going
between –O2 to –O3.

cache and page
alignment has
changed

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
14

LLVM Alignment Switches

LLVM tends to cache-align functions, but it also
provides several compiler switches for controlling
alignment:
• -align-all-functions=<uint>

• Force the alignment of all functions.
• -align-all-blocks=<uint>

• Force the alignment of all blocks in the function.
• -align-all-nofallthru-blocks=<uint>

• Force the alignment of all blocks that have no fall-through
predecessors (i.e. don't add nops that are executed).

Aligned code is more likely to avoid performance
anomalies, but it can also sometimes be slower.

© 2008–2018 by the MIT 6.172 Lecturers
15

Data Alignment

A program’s name can affect its speed!
• [Mytkowicz, Diwan, Hauswirth, and Sweeney, “Producing wrong

data without doing anything obviously wrong,” 2009.]

• The executable’s name ends up in an environment
variable.

• Environment variables end up on the call stack.
• The length of the name affects the stack alignment.
• Data access slows when crossing page boundaries.

© 2008–2018 by the MIT 6.172 Lecturers
16

OUTLINE
! QUIESCING SYSTEMS
! TOOLS FOR MEASURING
SOFTWARE PERFORMANCE

! PERFORMANCE MODELING

!"##$*
%&'&(*

"#)*+)$#)*+,*-./01*
!

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
17

Ways to Measure a Program
• Measure the program externally.

• /usr/bin/time

• Instrument the program.
• Include timing calls in the program.
• E.g., gettimeofday(), clock_gettime(), rdtsc().
• By hand, or with compiler support.

• Interrupt the program.
• Stop the program, and look at its internal state.

• E.g., gdb, Poor Man’s Profiler, gprof.

• Exploit hardware and operating systems support.
• Run the program with counters maintained by the hardware

and operating system, e.g., perf.

• Simulate the program.
• E.g., cachegrind.

© 2008–2018 by the MIT 6.172 Lecturers
18

/usr/bin/time

The time command can measure elapsed time, user
time, and system time for an entire program.
What does that mean?

real 0m3.502s
user 0m0.023s
sys 0m0.005s

∙ real is wall-clock time.
∙ user is the amount of processor time spent in

user-mode code (outside the kernel) within the
process.

∙ sys is the amount of processor time spent in the
kernel within the process.

© 2008–2018 by the MIT 6.172 Lecturers
19

clock_gettime(CLOCK_MONOTONIC, …)

#include <time.h>

struct timespec start, end;

clock_gettime(CLOCK_MONOTONIC, &start);

function_to_measure();

clock_gettime(CLOCK_MONOTONIC, &end);

double tdiff = (end.tv_sec - start.tv_sec)

+ 1e-9*(end.tv_nsec - start.tv_nsec);

! On my laptop, clock_gettime(CLOCK_MONOTONIC, …)
takes about 83ns.

! That’s about two orders of magnitude faster than a
system call.

! clock_gettime(CLOCK_MONOTONIC, …) guarantees never
to run backwards.

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
20

rdtsc()

x86 processors provide a time-stamp counter (TSC)
in hardware. You can read TSC as follows:

static __inline__ unsigned long long rdtsc(void)
{

unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return (((unsigned long long)lo)

| (((unsigned long long)hi)<<32));
}

! The time returned is “clock cycles since boot.”
! rdtsc() runs in about 32ns.

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
21

Don’t Use Lousy Timers!

• rdtsc() may give different answers on different
cores on the same machine.

• TSC sometimes runs backwards.
• The counter may not progress at a constant speed.
• Converting clock cycles to seconds can be ... tricky.
• Don’t use rdtsc()!
• And don’t use gettimeofday(), either, because it has

similar problems!

© 2008–2018 by the MIT 6.172 Lecturers
22

Interrupting

• IDEA: Run your program under gdb, and type
control-C at random intervals.

• Look at the stack each time to determine which
functions are usually being executed.

• Who needs a fancy profiler?
• Some people call this strategy the “Poor Man’s

Profiler.”
• pmprof and gprof automate this strategy to provide

profile information for all your functions.
• Neither is accurate if you don’t obtain enough

samples. (gprof samples only 1OO times per
second.)

© 2008–2018 by the MIT 6.172 Lecturers
23

Hardware Counters

• libpfm4 virtualizes all the hardware counters
• Modern kernels make it possible for libraries such

as libpfm4 to measure all the provided hardware
event counters on a per-process basis.

• perf stat employs libpfm4.
• There are many esoteric hardware counters. Good

luck figuring out what they all measure.
• Watch out: You probably cannot measure more

than 4 or 5 counters at a time without paying a
penalty in performance or accuracy.

© 2008–2018 by the MIT 6.172 Lecturers
24

Simulation

• Simulators, such as cachegrind, usually run much
slower than real time.

• But they can deliver accurate and repeatable
performance numbers.

• If you want a particular statistic, you can go in
and collect it without perturbing the simulation.

© 2008–2018 by the MIT 6.172 Lecturers
25

OUTLINE
! QUIESCING SYSTEMS
! TOOLS FOR MEASURING
SOFTWARE PERFORMANCE

! PERFORMANCE MODELING

!"##$*
%&'&(*

"#)*+)$#)*+,*-./01*
!

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
26

Basic Performance-Engineering Workflow

1.Measure the performance of Program A.
2.Make a change to Program A to produce

a hopefully faster Program A!.
3.Measure the performance of Program A!.
4. If A! beats A, set A = A!.
5. If A is still not fast enough, go to Step 2.

If you can’t measure performance reliably, it is
hard to make many small changes that add up.

!"#$$%&#$'%"()"*+,"-./"01'2#"3,4*56,67"
27

Problem

Suppose that you measure the performance of a
deterministic program 100 times on a computer with
some interfering background noise. What statistic
best represents the raw performance of the software?
• arithmetic mean
• geometric mean
• median
• maximum
• minimum

© 2008–2018 by the MIT 6.172 Lecturers
28

Problem

Suppose that you measure the performance of a
deterministic program 100 times on a computer with
some interfering background noise. What statistic
best represents the raw performance of the software?
• arithmetic mean
• geometric mean
• median
• maximum
•✓minimum

Minimum does the best at noise rejection, because
we expect that any measurements higher than the
minimum are due to noise.

© 2008–2018 by the MIT 6.172 Lecturers
29

Selecting among Summary Statistics
Service as many requests
as possible
∙ Arithmetic mean
∙ CPU utilization

All tasks are completed
within 10 ms
∙ Arithmetic mean
∙ Wall-clock time

Most service requests are
satisfied within 100 ms
∙ 90th percentile
∙ Wall clock time

Meet a customer service-
level agreement (SLA)
∙ Some weighted combination
∙ multiple

Fit into a machine with
100 MB of memory
∙ Maximum
∙ Memory use

Least cost possible
∙ Arithmetic mean
∙ Energy use or CPU utilization

Fastest/biggest/best
solution
∙ Arithmetic mean
∙ Speedup of wall clock time

© 2008–2018 by the MIT 6.172 Lecturers
30

Summarizing Ratios

Conclusion
Program B is > 3 times better than A.

WRONG!
© 2008–2018 by the MIT 6.172 Lecturers

31

Trial Program A Program B A/B

Mean 7.25 6.75 3.03

1 9 3 3.00

2 8 2 4.00

3 2 20 0.10

4 10 2 5.00

Turn the Comparison Upside-Down

Trial Program A Program B A/B B/A

Mean 7.25 6.75 3.03 2.70

Paradox
If we look at the ratio B/A, then A is
better by a factor of almost 3.
Observation
The arithmetic mean of A/B is NOT the
inverse of the arithmetic mean of B/A.

© 2008–2018 by the MIT 6.172 Lecturers
32

1 9 3 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

4 10 2 5.00 0.20

Geometric Mean

Trial Program A Program B A/B B/A

Mean (a) 7.25 (a) 6.75 (g) 1.57 (g) 0.64

Formula
P ম��P � అn ভః CK C�C� ੈ CP

K��

Observation
The geometric mean of A/B IS the inverse
of the geometric mean of B/A.

© 2008–2018 by the MIT 6.172 Lecturers
33

1 9 3 3.00 0.33

2 8 2 4.00 0.25

3 2 20 0.10 10.00

4 10 2 5.00 0.20

Comparing Two Programs

Q. You want to know which of two programs, A and B,
is faster, and you have a slightly noisy computer on
which to measure their performance. What is your
strategy?

A. Perform n head-to-head comparisons between A
and B, and suppose A wins more frequently.
Consider the null hypothesis that B beats A, and
calculate the P-value: “If B beats A, what is the
probability that we’d observe that A beats B more
often than we did?” If the P-value is low, we can
accept that A beats B.

(See Statistics 101.)

NOTE: With a lot of noise, we need lots of trials.

© 2008–2018 by the MIT 6.172 Lecturers
34

Fitting to a Model

Suppose that I have gathered this data:
Program Time (s) Instructions Cache misses

python 34864 170889186565542 36615004052

java 2618 7509707536406 39322034007

C gcc -O0 1480 2274589361551 68047140354

C gcc -O3 430 278479001783 34049504541

I want to infer how long it takes to run an
instruction and how long to take a cache miss.

I guess that I can model the runtime T as
T = a⋅I + b⋅C ,

where
• I is the number of instructions, and
• C is the number of cache misses.

© 2008–2018 by the MIT 6.172 Lecturers
35

Least-Squares Regression

A least-squares regression can fit the data to the
model

T = a⋅I + b⋅C ,
yielding

• a = 0.2002 ns
• b = 18.00 ns

with R2 = 0.9997, which means that 99.97% of the
data is explained by the model.

© 2008–2018 by the MIT 6.172 Lecturers
36

Issues with Modeling

Adding more basis functions to the model improves
the fit, but how do I know whether I’m overfitting?
• Removing a basis function doesn’t affect the quality much.
Is the model predictive?
• Pick half the data at random.
• Use that data to find the coefficients.
• Using those coefficients, fid out how well the model predicts

the other half of the data.
How can I tell whether I’m fooling myself?
• Triangulate.
• Check that different ways of measuring tell a consistent

story.
• Analogously to a spreadsheet, make sure the sum of the row

sums adds up to the sum of the column sums.

© 2008–2018 by the MIT 6.172 Lecturers
37

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

38

ocw.mit.edu
ocw.mit.edu/terms

