Consider the following dag representing a multithreaded computation, where each circle denotes a serially executing strand that takes unit time to execute:

Please provide a numerical answer to the following questions.

- What is the work of this computation?
- What is the span of this computation?
- What is the parallelism of this computation?

Five students have implemented recursive Fibonacci programs, where the base case of each program returns 1 if the program input is $n=0$ or $n=1$. For n > 1, the various students calculate Fibonacci using the code snippets for the recursive cases shown below:
a:
$x=f i b(n-1) ;$
$y=f i b(n-2) ;$
b:

```
x = cilk_spawn fib(n - 1);
y = cilk_spawn fib(n - 2);
cilk_sync;
```

c: $x=f i b(n-1)$;
y = cilk_spawn fib(n - 2);
cilk_sync;
d: y = cilk_spawn fib(n - 2);
$\mathrm{x}=\mathrm{fib}(\mathrm{n}-1)$;
cilk_sync;
e: $\mathrm{x}=$ cilk_spawn fib(n - 1);
$y=f i b(n-2) ;$
cilk_sync;

Assume that the overhead of spawning a function is about 10 times the cost of an ordinary function call. Rank these codes in order of the performance you would expect for large n. (e.g., fastest $>$ second fastest $>\cdots>$ slowest):

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems

 Fall 2018For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

