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Recall: Basics of Cilk 

!"# $!%&!"# "' 
( 

!$)&")*)+'),-#.,")"/ 
!"# 01)2/ 
0)3)4!56789:;" $!%&"<='/
2)3)$!%&"<+'/
4!56782"4/
,-#.,")0)>)2/

? 

The named child function 
may execute in parallel 
with the parent caller. 

Control cannot pass this 
point until all spawned
children have returned. 

Cilk keywords grant permission for parallel execution. 
They do not command parallel execution. 
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Loop Parallelism in Cilk 

Example: a11 a12 ! a1n a11 a21 ! an1
In-place a21 a22 ! a2n a12 a22 ! an2matrix 

" " # " " " # "transpose 
an1 an2 ! ann a1n a2n ! ann

A AT

The iterations 
of a !"#$%&'(
loop execute 
in parallel. 
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Race Conditions 
Race conditions are the 
bane of concurrency. 
Famous race bugs include 
the following: 
• Therac-25 radiation

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/therapy machine — killed 

3 people and seriously
injured many more.

• North American Blackout
of 2003 — left 50 million
people without power.

Race bugs are notoriously
difficult to discover by
conventional testing! 

Image created by MIT OpenCourseWare from public domain image. 
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Determinacy Races 
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Definition. A determinacy race occurs when two 
logically parallel instructions access the same 
memory location and at least one of the instructions 
performs a write. 

A 

Example 

B $44( 

!"# $ %&'( 

899:/#0$ %%&35( 

$44( 

D 

dependency graph 
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A Closer Look 
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Race Bugs 

Definition. A determinacy race occurs when two 
logically parallel instructions access the same 
memory location and at least one of the instructions 
performs a write. 
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Types of Races 

Suppose that instruction A and instruction B 
both access a location x, and suppose that 
A∥B (A is parallel to B). 

A B Race Type 

  

  

 

 
 
 

       
   

    
     

 

read read none 
read write read race 
write read read race 
write write write race 

Two sections of code are independent if they 
have no determinacy races between them. 
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Avoiding Races 
• Iterations of a !"#$%&'( should be independent.
• Between a !"#$%)*+,- and the corresponding
!"#$%).-!, the code of the spawned child should
be independent of the code of the parent, including
code executed by additional spawned or called
children.
! Note: The arguments to a spawned function are evaluated

in the parent before the spawn occurs.

• Machine word size matters.  Watch out for races in
packed data structures:

)/(0!/ 1 
!2+(3+4
!2+(354

6374 

Ex. Updating 78+ and 785 in parallel may 
cause a race!  Nasty, because it may 
depend on the compiler optimization 
level. (Safe on Intel x86-64.) 
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Cilksan Race Detector 

• The Cilksan-instrumented program is produced
by compiling with the –fsanitize=cilk
command-line compiler switch.

• If an ostensibly deterministic Cilk program run on
a given input could possibly behave any differently
than its serial elision, Cilksan guarantees to report
and localize the offending race.

• Cilksan employs a regression-test methodology,
where the programmer provides test inputs.

• Cilksan identifies filenames, lines, and variables
involved in races, including stack traces.

• Ensure that all program files are instrumented, or
you’ll miss some bugs.

• Cilksan is your best friend.
© 2008–2018 by the MIT 6.172 Lecturers 11



Cilksan Output 
! "#$%&'( )*++,-'"
.
/'"01-020"20-1'21'--30&&14567"484
93#201'""0&&12:1;1<-0"$'30-1'21++*++,-'")"=>8? 

@3:+145A440-41++,B'&0 ++*++,-'")"=CA=D7 
;'$$0-1@3:+145A4DE6E1++,-'" ++*++,-'")"=78=7 
;'$$0-1@3:+145A4>7-41++,-'" ++*++,-'")"=6C=7 
FG'H(0-1@3:+145A4D7AE1++,-'" ++*++,-'")"=6C=7 
;'$$0-1@3:+145A4>7-41++,-'" ++*++,-'")"=6C=7 
FG'H(0-1@3:+145A4D7AE1++,-'" ++*++,-'")"=6C=7 

/0'-1'""0&&12:11;1<-0"$'30-1'21++*++,-'")"=>8? 
@3:+145A440>81++,B'&0 ++*++,-'")"=CA=D7 

;'$$0-1@3:+145A4DE6E1++,-'" ++*++,-'")"=78=7 
;:++:(1"'$$#(I1":(2052 

;'$$0-1@3:+145A4D"4>1+'#(1++*++,-'")"=E7=C 

4)6E66C8

/'"01-020"2:31-020"20-12:2'$1:@1A813'"0&) 
/'"01-020"2:31&JGG30&&0-1DA8A4K1-JG$#"'201033:31+0&&'I0& 
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Execution Model 

!"# $!%&'!"# "(&) 
!$&'"&*&+(&,-#.,"&"/ 
-01-&)

!"# 23&4/ 
2&5&6!07819:;" $!%'"<=(/ 
4&5&$!%'"<+(/ 
6!07814"6/ 
,-#.,"&2&>&4/ 

? 
? 

Example: 
$!%'@( 
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Execution Model 

!"#&$!%&'!"#&"(&)&
!$&'"&*&+(&,-#.,"&"/&
-01-&)&

?&
?&

The computation dag 
unfolds dynamically. 

Example: 
$!%'@(&

“Processor 
oblivious” 

!
!"#&23&4/&
2&5&6!07819:;"&$!%'"<=(/&
4&5&$!%'"<+(/&
6!07814"6/&
,-#.,"&2&>&4/& "

#

#

$

$ $ %

%
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strand continue edge 

return edge 
spawn edge 

Computation Dag 

initial strand final strand 

call edge 

! A parallel instruction stream is a dag G = (V, E ).
! Each vertex v ! V is a strand: a sequence of instructions

not containing a spawn, sync, or return from a spawn.
! An edge e ! E is a spawn, call, return, or continue edge.
! Loop parallelism (!"#$%&'() is converted to spawns and

syncs using recursive divide-and-conquer.

© 2008–2018 by the MIT 6.172 Lecturers 16



  

  
  

How Much Parallelism? 

Assuming that each strand executes in unit time, 
what is the parallelism of this computation? 

© 2008–2018 by the MIT 6.172 Lecturers 17



    
   

  
  

   
 

Amdahl’s “Law” 

Gene M. Amdahl 

If 50% of your application is parallel 
and 50% is serial, you can’t get more 
than a factor of 2 speedup, no matter 
how many processors it runs on. 

In general, if a fraction ! of an application must 
be run serially, the speedup can be at most 1/!. 

Image courtesy of Perry Kivolowitz on Wikipedia. Used under CC-BY. 
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Quantifying Parallelism 
What is the parallelism of this computation? 

Amdahl’s Law says that 
since the serial fraction is 
3/18 = 1/6, the speedup 
is upper-bounded by 6. 

© 2008–2018 by the MIT 6.172 Lecturers 19



 

 

Performance Measures 

TP = execution time on P processors 

T1 = work 
= 18 
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Performance Measures 

TP = execution time on P processors 

= 18 
T1 = work T! = span* 

= 9 

*Also called critical-path length
or computational depth.
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Performance Measures 
TP = execution time on P processors 

*Also called critical-path length
or computational depth.

WORK LAW
! TP "T1/P

SPAN LAW
! TP " T#

= 18 = 9 
T1 = work T# = span* 
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Work: T1(A!B) =

Span: T"(A!B) = 

Series Composition 

A B 

Work: T1(A!B) = T1(A) + T1(B) 

Span: T"(A!B) = T"(A) + T"(B) 
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Work: T1(A!B) =

Span: T"(A!B) = 

Parallel Composition 

A 

B 

Work: T1(A!B) = T1(A) + T1(B) 

Span: T"(A!B) = max{T"(A), T"(B)} 
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Speedup 

Definition. T1/TP = speedup on P processors. 

● If T1/TP < P, we have sublinear speedup.
● If T1/TP = P, we have (perfect) linear speedup.
● If T1/TP > P, we have superlinear speedup,

which is not possible in this simple
performance model, because of the WORK LAW
TP ≥ T1/P.
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Parallelism 

Because the SPAN LAW dictates that 
TP ! T", the maximum possible 
speedup given T1 and T" is 
T1/T" = parallelism 

= the average 
amount of work 
per step along 
the span 

= 18/9 
= 2 . 
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Example: !"#$%&

4 

5 

6 

1 

2 7 

8 

3 

Assume for simplicity 
that each strand in 
!"#$%& takes unit 
time to execute. 

Work: T1Work: T1 = 17 

Span: T!Span: T! == 8 

= 2.125 Parallelism: T1/T!Parallelism: T1/T! 

Using many more than 2 processors can 
yield only marginal performance gains. 
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Cilkscale Scalability Analyzer 

∙ The Tapir/LLVM compiler provides a scalability
analyzer called Cilkscale.

∙ Like the Cilksan race detector, Cilkscale uses
compiler-instrumentation to analyze a serial
execution of a program.

∙Cilkscale computes work and span to derive
upper bounds on parallel performance.
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Quicksort Analysis 

Example: Parallel quicksort 

!"#"$% &'$( )*$%+!',"-!$./0" 12/3"4 !$./0" 1,$56"7 
8 

$3 -2/3" 99 ,$56"7 ,/"*,:; 
!$./0" 1< 9 <#,"$"$':-2/3"4 ,$56"7;=>>,*:=!/,$#22? 
%$2+0!<#@: )*$%+!',"-2/3"4 <7; 
)*$%+!',"-< A B4 ,$56"7; 
%$2+0!?:%; 

C 

Analyze the sorting of 1,000,000 numbers. 
!!! Guess the parallelism! !!!
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Cilkscale Output 

Measured 
speedup 
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Cilkscale Output 

SPAN LAW
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Cilkscale Output 

WORK LAW
(LINEAR

SPEEDUP) 
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Cilkscale Output 
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Theoretical Analysis 

Example: Parallel quicksort 

!"#"$% &'$( )*$%+!',"-!$./0" 12/3"4 !$./0" 1,$56"7 
8 

$3 -2/3" 99 ,$56"7 ,/"*,:; 
!$./0" 1< 9 <#,"$"$':-2/3"4 ,$56"7;=>>,*:=!/,$#22? 
%$2+0!<#@: )*$%+!',"-2/3"4 <7; 
)*$%+!',"-< A B4 ,$56"7; 
%$2+0!?:%; 

C 

Expected work = !(n lg n) Parallelism = !(lg n) Expected span = !(n) 
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Interesting Practical* Algorithms 

Algorithm Work Span Parallelism 
Merge sort 
Matrix multiplication 
Strassen 
LU-decomposition 
Tableau construction 
FFT 
Breadth-first search 

!(n lg n) !(lg3n) !(n/lg2n) 
!(n3) !(lgn) !(n3/lgn) 
!(nlg7) !(nlg7/lg2n) !(lg2n) 
!(n3) !(n lg n) !(n2/lgn) 

!(nlg3) !(n2-lg3) !(n2) 
!(n lg n) !(lg2n) !(n/lg n) 
!(E) !(" lg V) !(E/" lg V) 

*Cilk on 1 processor competitive with the best C.
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Scheduling 
! Cilk allows the

programmer to express
potential parallelism in
an application.

! The Cilk scheduler maps
strands onto processors
dynamically at runtime.

! Since the theory of
distributed schedulers is
complicated, we’ll
explore the ideas with a
centralized scheduler.

© 2008–2018 by the MIT 6.172 Lecturers 
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Network 
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Greedy Scheduling 

IDEA: Do as much as possible on every step. 

Definition. A strand is ready if all 
its predecessors have executed. 

© 2008–2018 by the MIT 6.172 Lecturers 39



 

 

Greedy Scheduling 

IDEA: Do as much as possible on every step. 

Definition. A strand is ready if all 
its predecessors have executed. 

Complete step 
! ! P strands ready.
! Run any P.

© 2008–2018 by the MIT 6.172 Lecturers 
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Greedy Scheduling 

IDEA: Do as much as possible on every step. 

Definition. A strand is ready if all 
its predecessors have executed. 

Complete step 
! ! P strands ready.
! Run any P.

Incomplete step 
! < P strands ready.
! Run all of them.

© 2008–2018 by the MIT 6.172 Lecturers 

P = 3 
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Analysis of Greedy 

Theorem [G68, B75, EZL89]. Any greedy scheduler 
achieves 

TP ! T1/P + T". 

Proof. 
# # complete steps ! T1/P, 

since each complete step 
performs P work. 

# # incomplete steps ! T", 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1. $
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Optimality of Greedy 

Corollary. Any greedy scheduler achieves within a 
factor of 2 of optimal. 

Proof. Let TP* be the execution time produced by 
the optimal scheduler. Since TP* ≥ max{T1/P, T∞} 
by the WORK and SPAN LAWS, we have 

TP ≤ T1/P + T∞
≤ 2·max{T1/P, T∞} 
≤ 2TP* .  ■
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Linear Speedup 

Corollary. Any greedy scheduler achieves near-
perfect linear speedup whenever T1/T∞ ≫ P. 

Proof. Since T1/T∞ ≫ P is equivalent to 
T∞ ≪ T1/P, the Greedy Scheduling Theorem 
gives us 

TP ≤ T1/P + T∞
≈ T1/P . 

Thus, the speedup is T1/TP ≈ P.  ■

Definition. The quantity T1/(PT∞) is called the 
parallel slackness. 
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Cilk Performance 

● Cilk’s work-stealing scheduler achieves
■ TP = T1/P + O(T∞) expected time (provably);
■ TP ≈ T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as
P ≪ T1/T∞ .

● Instrumentation in Cilkscale allows you to
measure T1 and T∞ .
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

P 

spawn spawn 
call 
call 
call 

P 

spawn spawn 
call 

P

Call! 

spawn spawn spawn 
call 

spawn spawn 
call 

spawn spawn 
call 

P P 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

P 

spawn spawn 
call 
call 
call 

spawn 

P 

spawn spawn 
call 

spawn spawn 

P

Spawn! 

spawn spawn spawn 
call 

spawn spawn 
call 

spawn spawn 
call 

P P 

© 2008–2018 by the MIT 6.172 Lecturers 48



Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

P 

spawn spawn 
call 
call 
call 

spawn spawn 
spawn 

P 

spawn 
spawn spawn 

P P 

spawn 
call 

spawn spawn 
call 
call 

spawn spawn 
call 

spawn 

spawn 
call 

spawn spawn 

Spawn! 

P

Spawn! 

P

spawn spawn 

Call! 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

spawn 

P 

spawn spawn 
call 
call 
call 

spawn 

P 

spawn spawn 

P 

spawn 
call 

spawn spawn 
call 
call

spawn 
spawn 

P

call call 
callcallcallcallReturn! 

spawn 
call 

spawn spawn 
call 

spawn 

P 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

spawn 

P 

spawn spawn 
call 
call 
call 

spawn 

P 

spawn spawn 

P 

spawn 
call 

spawn spawn 
call 
call

spawn 
spawn 

P

call call 
callcallcallcallReturn! 

spawn spawn 
call 

spawn 

P 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

P 

spawn spawn 
call 
call 
call 

spawn 

P 

spawn 

P 

spawn 
call 

spawn spawn 
call 
call

spawn 
spawn 

P

call call 
callcallSteal! 

spawn spawn 
call 

spawn 

P 

When a worker runs out of work, it steals 
from the top of a random victim’s deque. 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

P 

spawn spawn 
call 
call 
call 

spawn 

P 

spawn 

P 

spawn 
call 

spawn spawn 
call 
call

spawn 
spawn 

P

call call 
callcallSteal! 

spawn spawn 
call 

spawn 

P 

When a worker runs out of work, it steals 
from the top of a random victim’s deque. 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

spawn spawn 
call 
call 
call 

spawn 

spawn spawn 
call 

spawn spawn 
call 
call 

spawn spawn 
call 

spawn 
spawn 

spawn 

P P P P 

When a worker runs out of work, it steals 
from the top of a random victim’s deque. 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

P 

spawn spawn 
call 
call 
call 

spawn 

P 

spawn 

P 

spawn 
call 

spawn spawn 
call 
call

spawn 
spawn 

P

call call 
callcallcallcallSpawn! 

spawn 
spawn spawn 

call 
spawn 

P 

When a worker runs out of work, it steals 
from the top of a random victim’s deque. 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

spawn spawn 
call 
call 
call 

spawn 

spawn spawn 
call 

spawn spawn 
call 
call 

spawn spawn 
call 

spawn 
spawn 

spawn 
spawn 

P P P P 

When a worker runs out of work, it steals 
from the top of a random victim’s deque. 
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Cilk Runtime System 

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack [MKH90, BL94, FLR98]. 

spawn spawn 
call 
call 
call 

spawn 

spawn spawn 
call 

spawn spawn 
call 
call 

spawn spawn 
call 

spawn 
spawn 

spawn 
spawn 

Theorem [BL94]:  With sufficient parallelism, 

P P P P 

workers steal infrequently ! linear speed-up. 
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Work-Stealing Bounds 

Theorem [BL94]. The Cilk work-stealing 
scheduler achieves expected running time 

TP ≈ T1/P + O(T∞) 
on P processors. 

Pseudoproof. A processor is either working or 
stealing.  The total time all processors spend 
working is T1.  Each steal has a 1/P chance of 
reducing the span by 1.  Thus, the expected cost 
of all steals is O(PT∞).  Since there are P 
processors, the expected time is 

(T1 + O(PT∞))/P = T1/P + O(T∞) .  ■
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C 

E 

A A 

B 

A 

C 

A 

C 

D 

A 

C 

E 

A B C D E 

Cilk’s cactus stack supports 
multiple views in parallel. 

Cactus Stack 
Cilk supports C’s rule for pointers: A pointer to stack 
space can be passed from parent to child, but not from 
child to parent. 

Views of stack 
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Bound on Stack Space 

Theorem. Let S1 be the stack space required by a serial 
execution of a Cilk program.  Then the stack space 
required by a P-processor execution is at most SP ! PS1. 

Proof (by induction). 
The work-stealing 
algorithm maintains the 
busy-leaves property: 
Every extant leaf 
activation frame has a 
worker executing it. "

P 

P 

P 

S1

P = 3 
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Summary 

∙ Determinacy races are often bugs, and they can 
be detected using Cilksan 

∙ Cilkscale can analyze the work, span, and 
parallelism of a computation 

∙ A greedy scheduler is within a factor of 2 of the 
optimal scheduler 

∙ Cilk uses a work-stealing scheduler with strong 
theoretical bounds on its running time 
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