6.172 ~ b
Performance SPEED
Engineering LIMIT
of Software

o0

\ PER ORDER OF 6.172 ‘

Systems

Races and Parallelism

Julian Shun

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Basics of Cilk

int fib(int n) The named child function

{ may execute in parallel
if (n < 2) re#irn n; RAURUENZICE RS

int x, y;

x = cilk spawn fib(n-1);

y = fib(n-2);

cilk sync;

retur% Control cannot pass this
} point until all spawned

children have returned.

Cilk keywords grant permission for parallel execution.
They do not command parallel execution.

© 2008-2018 by the MIT 6.172 Lecturers 2

Loop Parallelism in Cilk

Example: Ka”
In-place
matrix
transpose

The iterations

of a cilk for
loop execute
in parallel.

© 2008-2018 by the MIT 6.172 Lecturers

B 4
di2 ... djp di

dyy ... dyp » dyo dpp

ann a]n a2n -

S -

A AT

ann

// 1ndices run from 6, not 1
cilk for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {
double temp = A[i][j];
A[i][3] = A[F][1i];
A[J][1] = temp;

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers 4

Race conditions are the

bane of concurrency.

Famous race bugs include

the following:

» Therac-25 radiation
therapy machine — killed
3 people and seriously

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
.
injured many more.

i*:r*
» North American Blackout \

of 2003 — left 50 million g
people without power.

Race bugs are notoriously
difficult to discover by
conventional testing!

Image created by MIT OpenCourseWare from public domain image.

© 2008-2018 by the MIT 6.172 Lecturers 5

https://commons.wikimedia.org/wiki/File:North_America_blank_map_with_state_and_province_boundaries.png
https://ocw.mit.edu/help/faq-fair-use/

Determinacy Races

Definition. A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

Example int x = 0
ENTSX =40 . 2 I L
cilk for (int i=0, i<2, ++i) {
| X++; X++; X++; |
}
assert(x == 2); v
- assert(x == 2);

dependency graph

© 2008-2018 by the MIT 6.172 Lecturers 6

A Closer Look

X++; X++; |1 rl++; r

L] X

assert(x == 2); l I

assert(x == 2);

© 2008-2018 by the MIT 6.172 Lecturers 7

Definition. A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

X = 0;

X rl; X = r2; 1 1
assert(x == 2);

© 2008-2018 by the MIT 6.172 Lecturers 8

Types of Races

Suppose that instruction A and instruction B
both access a location x, and suppose that
AlB (A is parallel to B).

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they
have no determinacy races between them.

© 2008-2018 by the MIT 6.172 Lecturers 9

e |terations of a cilk for should be independent.

e Between a cilk spawn and the corresponding
cilk sync, the code of the spawned child should
be independent of the code of the parent, including
code executed by additional spawned or called
children.
= Note: The arguments to a spawned function are evaluated

in the parent before the spawn occurs.
e Machine word size matters. Watch out for races in

packed data structures:

St Ex. Updating x.a and x.b in parallel may
char a; cause a race! Nasty, _becausg ijc may
char b; depend on the compiler optimization

T X y level. (Safe on Intel x86-64.)

© 2008-2018 by the MIT 6.172 Lecturers 10

Cilksan Race Detector

e The Cilksan-instrumented program is produced
by compiling with the -fsanitize=cilk
command-line compiler switch.

e If an ostensibly deterministic Cilk program run on
a given input could possibly behave any differently

than its serial elision, Cilksan guarantees to report
and localize the offending race.

o Cilksan employs a regression-test methodology,
where the programmer provides test inputs.

e Cilksan identifies filenames, lines, and variables
involved in races, including stack traces.

e Ensure that all program files are instrumented, or
you’ll miss some bugs.

e Cilksan is your best friend.

© 2008-2018 by the MIT 6.172 Lecturers 11

Cilksan Output

$ cilksan ./mm_dac

Race detected at address 0x65c070
Write access to C (declared at mm/mm_dac.c:27)
from 0x400edd® mm_base mm/mm_dac.c:34:15

Called from 0x401868 mm_dac mm/mm_dac.c:57:5
Called from 0x4025d0 mm _dac mm/mm_dac.c:63:5
Spawned from 0x401548 mm_dac mm/mm_dac.c:63:5
Called from 0x4025d0 mm _dac mm/mm_dac.c:63:5
Spawned from 0x401548 mm_dac mm/mm_dac.c:63:5

Read access to C (declared at mm/mm_dac.c:27)
from 0x400e27 mm_base mm/mm_dac.c:34:15
Called from 0x401868 mm_dac mm/mm_dac.c:57:5
Common calling context
Called from ©0x401c02 main mm/mm_dac.c:85:3

0.686637

Race detector detected total of 47 races.
Race detector suppressed 147409 duplicate error messages

© 2008-2018 by the MIT 6.172 Lecturers 12

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers 13

int fib (int n) {

if (n < 2) return n; Eganuﬂe:
else { fib(4)
int x, y;
x = cilk spawn fib(n-1);
y = fib(n-2);

cilk sync;
return x + y;

© 2008-2018 by the MIT 6.172 Lecturers 14

Execution Model

| iy 7 ¥ 0 o Bl 4 §

B e ln O 2 Returh® ny Exanuﬂe:
else { flb(4)
(7) GBS

x = cilk_spawn fib(n-1);

cilk sync;
return X '+ ¥,

¥

i

“Processor
oblivious”

The computation dag
unfolds dynamically.

© 2008-2018 by the MIT 6.172 Lecturers 15

Computation Dag

initial strand —>. - <«— final strand

— 1T\

continue edge
X! X/
spawn edge \)/\//gk S~
call edge

e A parallel instruction stream is a dag G = (V, E).

e Each vertex v € Vis a strand: a sequence of instructions
not containing a spawn, sync, or return from a spawn.

e An edge e € E is a spawn, call, return, or continue edge.

e Loop parallelism (cilk for) is converted to spawns and
syncs using recursive divide-and-conquer.

<«— Strand

return edge

© 2008-2018 by the MIT 6.172 Lecturers 16

// AN
//(/ Y
| X/

Assuming that each strand executes in unit time,
what is the parallelism of this computation?

© 2008-2018 by the MIT 6.172 Lecturers

Amdahl’s “Law”

(If 50% of your application is parallel

and 50% is serial, you can’t get more
than a factor of 2 speedup, no matter
how many processors it runs on.

&

N

Gene M. Amdahl

In general, if a fraction « of an application must
be run serially, the speedup can be at most 1/.

Image courtesy of Perry Kivolowitz on Wikipedia. Used under CC-BY.
© 2008-2018 by the MIT 6.172 Lecturers " 8 yorTEy E—

https://commons.wikimedia.org/wiki/File:Amdahl_march_13_2008.jpg

Quantifying Parallelism

What is the parallelism of this computation?

—
N\ Amdahl’s Law says that
since the serial fraction is
7N\ RN 3/18 = 1/6, the speedup
l l l is upper-bounded by 6.
N
|
\L

© 2008-2018 by the MIT 6.172 Lecturers

Tp = execution time on P processors

T, = work
! — 18

_—
RN

7\ VRN
| | | |
N

|

|

© 2008-2018 by the MIT 6.172 Lecturers 20

Tp = execution time on P processors

T, = work T, = span*
l =18 =9

—
N

7\ RN
|] l l
NI

]

\L *Also called critical-path length

or computational depth.

© 2008-2018 by the MIT 6.172 Lecturers 21

Tp = execution time on P processors

T, = work T, = span*
l =18 =9
/
WORK LAW
7N « Tp =T, /P
7\ RN
|]]] SPAN LAW
\1/ ® Tp > Too

|

| “Also called critical-path length

or computational depth.

© 2008-2018 by the MIT 6.172 Lecturers 22

Work: T,(AUB) = T,(A) + T,(B)
Span: T(AUB) = T_(A) + T.(B)

© 2008-2018 by the MIT 6.172 Lecturers

Work: T,(AUB) = T,(A) + T,(B)
Span. T (AUB) = max{T.(A), T.(B)}

© 2008-2018 by the MIT 6.172 Lecturers

Speedup

Definition. T,/Tp = speedup on P processors.

o If T,/Tp < P, we have sublinear speedup.
o If T,/Tp = P, we have (perfect) linear speedup.

o If T,/Tp > P, we have superlinear speedup,
which is not possible in this simple
performance model, because of the WORK LAW
Tp > T,/P.

© 2008-2018 by the MIT 6.172 Lecturers 25

Parallelism

Because the SPAN LAW dictates that

T, > T, the maximum possible }
speedup given T, and T, is _—
T,/T, = parallelism PN

= the average

amount of work | VRN VRN

per step along I | |
the span
- 18/9 N
= 2.]
\L

© 2008-2018 by the MIT 6.172 Lecturers 26

Example: fib(4)

\ Assume for simplicity

M that each strand in
fib(4) takes unit

34{6/</ //(/ time to execute.

LX)

Work: T, =17
Span: T, =8
Parallelism: T,/T, = 2.125

Using many more than 2 processors can
yvield only marginal performance gains.

© 2008-2018 by the MIT 6.172 Lecturers 27

o0

PER ORDER OF 6.172

CILKSCALE

© 2008-2018 by the MIT 6.172 Lecturers 28

Cilkscale Scalability Analyzer

e The Tapir/LLVM compiler provides a scalability
analyzer called Cilkscale.

e Like the Cilksan race detector, Cilkscale uses
compiler-instrumentation to analyze a serial
execution of a program.

e Cilkscale computes work and span to derive
upper bounds on parallel performance.

© 2008-2018 by the MIT 6.172 Lecturers 29

Quicksort Analysis

Example: Parallel quicksort

Analyze the sorting of 1,000,000 numbers.
*x x~ ~ Guess the parallelism! » » x

© 2008-2018 by the MIT 6.172 Lecturers 30

16 |

14

12

10

Speedup
(o]

Speedup: ./gsort 1000000

[[i I I
Observed Speedup

= Perfect Linear Speedup
Span Bound
[= Greedy Scheduling Bound

Measured
speedup

0 2 4 6

o =-ENERRNERRRL NE]

10 12 14 16
NUMAO: [1-8] NUMA1: [9-16]

© 2008-2018 by the MIT 6.172 Lecturers 31

Speedup: ./gsort 1000000

Wyr—r—T—T1T %717 T
Observed Speedup
14 Perfect Linear Speedup
Span Bound
12 Greedy Scheduling Bound
10 SPAN LAW
=1 5 :
Tg 8
%) E :
6 - -
4 : =
b A i
0 : | | I i | I |
0 2 4 6 8 10 12 14 16
NUMAQO: [1-8] NUMA1: [9-16]

© 2008-2018 by the MIT 6.172 Lecturers 32

16 |

14

12

10

Speedup
co

Speedup: ./gsort 1000000

[I [i I [
Observed Speedup

= Perfect Linear Speedup
Span Bound
= Greedy Scheduling Bound/=

WORK LAW
(LINEAR
SPEEDUP)

= AENENENRNERE RN

0 2 4 6

(02}

10 12 14 16
NUMAQO: [1-8] NUMA1: [9-16]

© 2008-2018 by the MIT 6.172 Lecturers 33

Execution Time: ./gsort 1000000

8 F—T1 7T 71 T T 1
Observed Runtime s
14 — Perfect Linear Speedup == —
Greedy Scheduling Bound =
12 — Span Bound = —
1
08
06
04
02 :
0 | | | i | | |
0 2 4 6 8 10 12 14 16
NUMAO: [1-8] NUMA1: [9-16]

© 2008-2018 by the MIT 6.172 Lecturers 34

Theoretical Analysis

Example: Parallel quicksort

static void quicksort
{
if (left == right)

size t *p = partiti
cilk spawn quicksor
quicksort(p + 1, ri
cilk sync;

Expected work = O(n Ig n)

Expected span = O(n) Parallelism = O(Ig n)

© 2008-2018 by the MIT 6.172 Lecturers 35

Interesting Practical* Algorithms

Algorithm Work Span Parallelism |

Merge sort O(nlgn) ©O(g3n) O(n/lgn)
Matrix multiplication O(n3) O(gn) O(n3/lgn)
Strassen ©(n'9”) O(g2n) BO(n'9?/Ig2n)
LU-decomposition O(n3) O(nlgn) O(n4/lgn)
Tableau construction ©(n?) O(nl93) ©(n2-193)
FFT O(nlgn) O(g?n) ©O(n/lgn)
Breadth-first search ©(E) OAIlgV) O(E/AlgV)

“Cilk on 1 processor competitive with the best C.

© 2008-2018 by the MIT 6.172 Lecturers

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers 37

Scheduling

e Cilk allows the . -
programmer to express _—_ 1\
potential parallelism in > > >
an application. K X1 LX7

e The Cilk scheduler maps l/(/
strands onto processors

dynamically at runtime. -
e Since the theory of

distributed schedulers is

- ’ Memory /O
complicated, we’ll
. . [| |
explore the ideas with a BER 11
centralized scheduler. Network
$ S KR
| | |
P P P

© 2008-2018 by the MIT 6.172 Lecturers 38

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all

its predecessors have executed. 1

__—
RN

7\ 7\
T
N7

|

|

© 2008-2018 by the MIT 6.172 Lecturers 39

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all

its predecessors have executed. ! P=3
Complete step —
e > P strands ready. N\

e Run any P.

l 7N\ 7O\
1 1 1

N
|

— |

© 2008-2018 by the MIT 6.172 Lecturers 40

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all

its predecessors have executed. ! P=3
Complete step —
e > P strands ready. N\

e Run any P.

Incomplete step I 7N\ 7N\

e < P strands ready. | | l

e Run all of them. e
l

— |

© 2008-2018 by the MIT 6.172 Lecturers 41

Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler
achieves

T, <T,/P+T..

Proof. —
« # complete steps < T,/P, N
since each complete step l PN N\

performs P work.
l l

e # incomplete steps < T,
since each incomplete step N
reduces the span of the
unexecuted dag by 1. =

|

\.\L

© 2008-2018 by the MIT 6.172 Lecturers 42

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a
factor of 2 of optimal.

Proof. Let Tp* be the execution time produced by
the optimal scheduler. Since Tp* = max{T,/P, T}
by the WORK and SPAN LAWS, we have
Tp <T,/P+ T,
< 2-max{T,/P, T,}
<2Tp*. B

© 2008-2018 by the MIT 6.172 Lecturers 43

Linear Speedup

Corollary. Any greedy scheduler achieves near-
perfect linear speedup whenever T,/T,, > P.

Proof. Since T,/T., > P is equivalent to
T, <« T,/P, the Greedy Scheduling Theorem
gives us

Tp <T,/P+ T,
~T,/P.
Thus, the speedup is T,/Tp, =~ P. ®

Definition. The quantity T,/(PT,) is called the
parallel slackness.

© 2008-2018 by the MIT 6.172 Lecturers 44

Cilk Performance

e Cilk’s work-stealing scheduler achieves
m T, =T,/P + O(T,) expected time (provably);
m T, =T,/P+ T,time (empirically).

e Near-perfect linear speedup as long as
P<T,/T,.

e Instrumentation in Cilkscale allows you to
measure T, and T, .

© 2008-2018 by the MIT 6.172 Lecturers 45

PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers 46

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call ' |
call call
call call

© 2008-2018 by the MIT 6.172 Lecturers 47

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call call
call call call

© 2008-2018 by the MIT 6.172 Lecturers 48

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

© 2008-2018 by the MIT 6.172 Lecturers 49

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

© 2008-2018 by the MIT 6.172 Lecturers 50

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call
call | '
call call

© 2008-2018 by the MIT 6.172 Lecturers 51

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call
call
call

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 52

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 53

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call
call call
call

call

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 54

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 55

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call call

call | 1 call
call

call

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 56

Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call call

call | 1 call
call

call

Theorem [BL94]: With sufficient parallelism,
workers steal infrequently = linear speed-up.

© 2008-2018 by the MIT 6.172 Lecturers 57

Work-Stealing Bounds

Theorem [BL94]. The Cilk work-stealing

scheduler achieves expected running time
Tp = T,/P + O(T,)

on P processors.

Pseudoproof. A processor is either working or
stealing. The total time all processors spend
working is T,. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT,). Since there are P
processors, the expected time is

(T, + OPTL)/P=T,;/P+0O(T,) . =

© 2008-2018 by the MIT 6.172 Lecturers 58

Cactus Stack

Cilk supports C’s rule for pointers: A pointer to stack
space can be passed from parent to child, but not from

hil :
child to parent Views ofstack

Cilk’s cactus stack supports
multiple views in parallel.

© 2008-2018 by the MIT 6.172 Lecturers 59

| M

@)

T

Bound on Stack Space

Theorem. Let S, be the stack space required by a serial
execution of a Cilk program. Then the stack space

required by a P-processor execution is at most S, < PS,.

Proof (by induction).

The work-stealing k

algorithm maintains the
busy-leaves property: S, —3 4 3
Every extant leaf 5 v 3
activation frame has a L)
worker executing it. m)
I 2
\ 4 —

© 2008-2018 by the MIT 6.172 Lecturers 60

o Determinacy races are often bugs, and they can
be detected using Cilksan

e Cilkscale can analyze the work, span, and
parallelism of a computation

o A greedy scheduler is within a factor of 2 of the
optimal scheduler

e Cilk uses a work-stealing scheduler with strong
theoretical bounds on its running time

© 2008-2018 by the MIT 6.172 Lecturers 61

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

62

ocw.mit.edu
ocw.mit.edu/terms

