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Recall: Basics of Cilk

int fib(int n) The named child function

{ may execute in parallel
if (n < 2) re#irn n; RAURUENZICE RS

int x, y;

x = cilk spawn fib(n-1);

y = fib(n-2);

cilk sync;

retur% Control cannot pass this
} point until all spawned

children have returned.

Cilk keywords grant permission for parallel execution.
They do not command parallel execution.
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Loop Parallelism in Cilk

Example: Ka”
In-place
matrix
transpose

The iterations

of a cilk for
loop execute
in parallel.
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B 4
di2 ... djp di

dyy ... dyp » dyo dpp

ann a]n a2n -

S -

A AT

ann

// 1ndices run from 6, not 1
cilk for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {
double temp = A[i][j];
A[i][3] = A[F][1i];
A[J][1] = temp;
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Race conditions are the

bane of concurrency.

Famous race bugs include

the following:

» Therac-25 radiation
therapy machine — killed
3 people and seriously

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
.
injured many more.

i*:r*
» North American Blackout \

of 2003 — left 50 million g
people without power.

Race bugs are notoriously
difficult to discover by
conventional testing!

Image created by MIT OpenCourseWare from public domain image.
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Determinacy Races

Definition. A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

Example int x = 0
ENTSX =40 . 2 I L
cilk for (int i=0, i<2, ++i) {
| X++; X++; X++; |
}
assert(x == 2); v
- assert(x == 2);

dependency graph
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A Closer Look

X++; X++; |1 rl++; r

L] X

assert(x == 2); l I

assert(x == 2);
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Definition. A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

X = 0;

X rl; X = r2; 1 1
assert(x == 2);
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Types of Races

Suppose that instruction A and instruction B
both access a location x, and suppose that
AlB (A is parallel to B).

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they
have no determinacy races between them.
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e |terations of a cilk for should be independent.

e Between a cilk spawn and the corresponding
cilk sync, the code of the spawned child should
be independent of the code of the parent, including
code executed by additional spawned or called
children.
= Note: The arguments to a spawned function are evaluated

in the parent before the spawn occurs.
e Machine word size matters. Watch out for races in

packed data structures:

St Ex. Updating x.a and x.b in parallel may
char a; cause a race! Nasty, _becausg ijc may
char b; depend on the compiler optimization

T X y level. (Safe on Intel x86-64.)
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Cilksan Race Detector

e The Cilksan-instrumented program is produced
by compiling with the -fsanitize=cilk
command-line compiler switch.

e If an ostensibly deterministic Cilk program run on
a given input could possibly behave any differently

than its serial elision, Cilksan guarantees to report
and localize the offending race.

o Cilksan employs a regression-test methodology,
where the programmer provides test inputs.

e Cilksan identifies filenames, lines, and variables
involved in races, including stack traces.

e Ensure that all program files are instrumented, or
you’ll miss some bugs.

e Cilksan is your best friend.
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Cilksan Output

$ cilksan ./mm_dac

Race detected at address 0x65c070
Write access to C (declared at mm/mm_dac.c:27)
from 0x400edd® mm_base mm/mm_dac.c:34:15

Called from 0x401868 mm_dac mm/mm_dac.c:57:5
Called from 0x4025d0 mm _dac mm/mm_dac.c:63:5
Spawned from 0x401548 mm_dac mm/mm_dac.c:63:5
Called from 0x4025d0 mm _dac mm/mm_dac.c:63:5
Spawned from 0x401548 mm_dac mm/mm_dac.c:63:5

Read access to C (declared at mm/mm_dac.c:27)
from 0x400e27 mm_base mm/mm_dac.c:34:15
Called from 0x401868 mm_dac mm/mm_dac.c:57:5
Common calling context
Called from ©0x401c02 main mm/mm_dac.c:85:3

0.686637

Race detector detected total of 47 races.
Race detector suppressed 147409 duplicate error messages

© 2008-2018 by the MIT 6.172 Lecturers 12



PER ORDER OF 6.172

© 2008-2018 by the MIT 6.172 Lecturers 13



int fib (int n) {

if (n < 2) return n; Eganuﬂe:
else { fib(4)
int x, y;
x = cilk spawn fib(n-1);
y = fib(n-2);

cilk sync;
return x + y;
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Execution Model

| iy 7 ¥ 0 o Bl 4 §

B e ln O 2 Returh® ny Exanuﬂe:
else { flb(4)
(7 ) GBS

x = cilk_spawn fib(n-1);

cilk sync;
return X '+ ¥,

¥

i

“Processor
oblivious”

The computation dag
unfolds dynamically.
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Computation Dag

initial strand —>. - <«— final strand

— 1T\

continue edge
X! X/
spawn edge \)/\//gk S~
call edge

e A parallel instruction stream is a dag G = (V, E).

e Each vertex v € Vis a strand: a sequence of instructions
not containing a spawn, sync, or return from a spawn.

e An edge e € E is a spawn, call, return, or continue edge.

e Loop parallelism (cilk for) is converted to spawns and
syncs using recursive divide-and-conquer.

<«— Strand

return edge
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// AN
//(/ Y
| X/

Assuming that each strand executes in unit time,
what is the parallelism of this computation?
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Amdahl’s “Law”

(If 50% of your application is parallel

and 50% is serial, you can’t get more
than a factor of 2 speedup, no matter
how many processors it runs on.

&

N

Gene M. Amdahl

In general, if a fraction « of an application must
be run serially, the speedup can be at most 1/.

Image courtesy of Perry Kivolowitz on Wikipedia. Used under CC-BY.
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Quantifying Parallelism

What is the parallelism of this computation?

—
N\ Amdahl’s Law says that
since the serial fraction is
7N\ RN 3/18 = 1/6, the speedup
l l l is upper-bounded by 6.
N
|
\L
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Tp = execution time on P processors

T, = work
! — 18

_—
RN

7\ VRN
| | | |
N

|

|
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Tp = execution time on P processors

T, = work T, = span*
l =18 =9

—
N

7\ RN
| ] l l
NI

]

\L *Also called critical-path length

or computational depth.
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Tp = execution time on P processors

T, = work T, = span*
l =18 =9
/
WORK LAW
7N « Tp =T, /P
7\ RN
| ] ] ] SPAN LAW
\1/ ® Tp > Too

|

| “Also called critical-path length

or computational depth.
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Work: T,(AUB) = T,(A) + T,(B)
Span: T(AUB) = T_(A) + T.(B)
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Work: T,(AUB) = T,(A) + T,(B)
Span. T (AUB) = max{T.(A), T.(B)}
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Speedup

Definition. T,/Tp = speedup on P processors.

o If T,/Tp < P, we have sublinear speedup.
o If T,/Tp = P, we have (perfect) linear speedup.

o If T,/Tp > P, we have superlinear speedup,
which is not possible in this simple
performance model, because of the WORK LAW
Tp > T,/P.
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Parallelism

Because the SPAN LAW dictates that

T, > T, the maximum possible }
speedup given T, and T, is _—
T,/T, = parallelism PN

= the average

amount of work | VRN VRN

per step along I | |
the span
- 18/9 N
= 2. ]
\L
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Example: fib(4)

\ Assume for simplicity

M that each strand in
fib(4) takes unit

34{6/</ //(/ time to execute.

LX)

Work: T, =17
Span: T, =8
Parallelism: T,/T, = 2.125

Using many more than 2 processors can
yvield only marginal performance gains.
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Cilkscale Scalability Analyzer

e The Tapir/LLVM compiler provides a scalability
analyzer called Cilkscale.

e Like the Cilksan race detector, Cilkscale uses
compiler-instrumentation to analyze a serial
execution of a program.

e Cilkscale computes work and span to derive
upper bounds on parallel performance.
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Quicksort Analysis

Example: Parallel quicksort

Analyze the sorting of 1,000,000 numbers.
*x x~ ~ Guess the parallelism! » » x
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16 |

14

12

10

Speedup
(o]

Speedup: ./gsort 1000000

[ [ i I I
Observed Speedup

= Perfect Linear Speedup
Span Bound
[= Greedy Scheduling Bound

Measured
speedup

0 2 4 6

o =-ENERRNERRRL NE]

10 12 14 16
NUMAO: [1-8] NUMA1: [9-16]
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Speedup: ./gsort 1000000

Wyr—r—T—T1T %717 T
Observed Speedup
14 Perfect Linear Speedup
Span Bound
12 Greedy Scheduling Bound
10 SPAN LAW
=1 5 :
Tg 8
%) E :
6 - -
4 : =
b A i
0 : | | I i | I |
0 2 4 6 8 10 12 14 16
NUMAQO: [1-8] NUMA1: [9-16]
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16 |

14

12

10

Speedup
co

Speedup: ./gsort 1000000

[ I [ i I [
Observed Speedup

= Perfect Linear Speedup
Span Bound
= Greedy Scheduling Bound/=

WORK LAW
(LINEAR
SPEEDUP)

= AENENENRNERE RN

0 2 4 6

(02}

10 12 14 16
NUMAQO: [1-8] NUMA1: [9-16]
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Execution Time: ./gsort 1000000

8 F—T1 7T 71 T T 1
Observed Runtime s
14 — Perfect Linear Speedup == —
Greedy Scheduling Bound =
12 — Span Bound = —
1
08
06
04
02 :
0 | | | i | | |
0 2 4 6 8 10 12 14 16
NUMAO: [1-8] NUMA1: [9-16]
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Theoretical Analysis

Example: Parallel quicksort

static void quicksort
{
if (left == right)

size t *p = partiti
cilk spawn quicksor
quicksort(p + 1, ri
cilk sync;

Expected work = O(n Ig n)

Expected span = O(n) Parallelism = O(Ig n)
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Interesting Practical* Algorithms

Algorithm Work  Span Parallelism |

Merge sort O(nlgn) ©O(g3n) O(n/lgn)
Matrix multiplication O(n3) O(gn) O(n3/lgn)
Strassen ©(n'9”)  O(g2n) BO(n'9?/Ig2n)
LU-decomposition O(n3) O(nlgn) O(n4/lgn)
Tableau construction ©(n?) O(nl93) ©(n2-193)
FFT O(nlgn) O(g?n) ©O(n/lgn)
Breadth-first search ©(E) OAIlgV) O(E/AlgV)

“Cilk on 1 processor competitive with the best C.
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Scheduling

e Cilk allows the . -
programmer to express _—_ 1\
potential parallelism in > > >
an application. K X1 LX7

e The Cilk scheduler maps l/(/
strands onto processors

dynamically at runtime. -
e Since the theory of

distributed schedulers is

- ’ Memory /O
complicated, we’ll
. . [ | |
explore the ideas with a BER 11
centralized scheduler. Network
$ S KR
| | |
P P P
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all

its predecessors have executed. 1

__—
RN

7\ 7\
T
N7

|

|
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all

its predecessors have executed. ! P=3
Complete step —
e > P strands ready. N\

e Run any P.

l 7N\ 7O\
1 1 1

N
|

— |

© 2008-2018 by the MIT 6.172 Lecturers 40



Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all

its predecessors have executed. ! P=3
Complete step —
e > P strands ready. N\

e Run any P.

Incomplete step I 7N\ 7N\

e < P strands ready. | | l

e Run all of them. e
l

— |
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Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler
achieves

T, <T,/P+T..

Proof. —
« # complete steps < T,/P, N
since each complete step l PN N\

performs P work.
l l

e # incomplete steps < T,
since each incomplete step N
reduces the span of the
unexecuted dag by 1. =

|

\.\L
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Optimality of Greedy

Corollary. Any greedy scheduler achieves within a
factor of 2 of optimal.

Proof. Let Tp* be the execution time produced by
the optimal scheduler. Since Tp* = max{T,/P, T}
by the WORK and SPAN LAWS, we have
Tp <T,/P+ T,
< 2-max{T,/P, T,}
<2Tp*. B
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Linear Speedup

Corollary. Any greedy scheduler achieves near-
perfect linear speedup whenever T,/T,, > P.

Proof. Since T,/T., > P is equivalent to
T, <« T,/P, the Greedy Scheduling Theorem
gives us

Tp <T,/P+ T,
~T,/P.
Thus, the speedup is T,/Tp, =~ P. ®

Definition. The quantity T,/(PT,) is called the
parallel slackness.
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Cilk Performance

e Cilk’s work-stealing scheduler achieves
m T, =T,/P + O(T,) expected time (provably);
m T, =T,/P+ T,time (empirically).

e Near-perfect linear speedup as long as
P<T,/T,.

e Instrumentation in Cilkscale allows you to
measure T, and T, .
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call ' |
call call
call call
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call call
call call call

© 2008-2018 by the MIT 6.172 Lecturers 48



Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call
call | '
call call
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call
call
call

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call
call call
call

call

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 55



Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call call

call | 1 call
call

call

When a worker runs out of work, it steals
from the top of a random victim’s deque.
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Cilk Runtime System

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

call

call call

call | 1 call
call

call

Theorem [BL94]: With sufficient parallelism,
workers steal infrequently = linear speed-up.
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Work-Stealing Bounds

Theorem [BL94]. The Cilk work-stealing

scheduler achieves expected running time
Tp = T,/P + O(T,)

on P processors.

Pseudoproof. A processor is either working or
stealing. The total time all processors spend
working is T,. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT,). Since there are P
processors, the expected time is

(T, + OPTL)/P=T,;/P+0O(T,) . =

© 2008-2018 by the MIT 6.172 Lecturers 58



Cactus Stack

Cilk supports C’s rule for pointers: A pointer to stack
space can be passed from parent to child, but not from

hil :
child to parent Views ofstack

Cilk’s cactus stack supports
multiple views in parallel.
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Bound on Stack Space

Theorem. Let S, be the stack space required by a serial
execution of a Cilk program. Then the stack space

required by a P-processor execution is at most S, < PS,.

Proof (by induction).

The work-stealing k

algorithm maintains the
busy-leaves property: S, —3 4 3
Every extant leaf 5 v 3
activation frame has a L )
worker executing it. m )
I 2
\ 4 —
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o Determinacy races are often bugs, and they can
be detected using Cilksan

e Cilkscale can analyze the work, span, and
parallelism of a computation

o A greedy scheduler is within a factor of 2 of the
optimal scheduler

e Cilk uses a work-stealing scheduler with strong
theoretical bounds on its running time
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