

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

6.172
Performance
Engineering
of Software
Systems

© 2008-2018 by the MIT 6.172 Lecturers

LECTURE 11
Storage
Allocation

Julian Shun

1

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers

STACKS

2

Stack Allocation

Array and pointer

used unused

!"

Allocate x bytes
!"$%&$'(
)*+,)-$!"$. '(

© 2008-2018 by the MIT 6.172 Lecturers 3

Stack Allocation

Array and pointer

used unused

!"

!"#$%#&'
$%&'$()!")* +,

Allocate x bytes

Should check for
stack overflow.

© 2008-2018 by the MIT 6.172 Lecturers 4

Stack Allocation

Array and pointer

used unused

!"

!"$%&$'(
!"#$!%&'(&) *+

Allocate x bytes

Should check for
stack overflow.

© 2008-2018 by the MIT 6.172 Lecturers 5

Stack Deallocation

Array and pointer

used unused !

"#

Allocate x bytes Free x bytes
"#$%&$'("#$)&$'(

+,-.$"#$% '(

© 2008-2018 by the MIT 6.172 Lecturers 6

Stack Deallocation

Array and pointer

used unused

!"

Allocate x bytes Free x bytes
!"#$%#&'

Should check for

!"$%&$'(
)*+,)-$!"$. '(

stack underflow.

© 2008-2018 by the MIT 6.172 Lecturers 7

Stack Storage
Array and pointer

used unused

!"

Allocate x bytes Free x bytes
!"*+,*-. !"*/,*-.

012304*!"*+ -.

!Allocating and freeing take "(1) time.
!Must free consistent with stack discipline.
! Limited applicability, but great when it works!
!One can allocate on the call stack using $%%&'$(),

but this function is deprecated, and the compiler is
more efficient with fixed-size frames.

© 2008-2018 by the MIT 6.172 Lecturers 8

 Stacks and Heaps

Image is in the public domain.
Image is in the public domain.

Stack Heap

© 2008-2018 by the MIT 6.172 Lecturers 9

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers

FIXED-SIZE
HEAP ALLOCATION

10

Heap Allocation*
C provides malloc() and free().
C++ provides new and delete.

Unlike Java and Python, C and C++ provide no
garbage collector. Heap storage allocated by
the programmer must be freed explicitly.
Failure to do so creates a memory leak. Also,
watch for dangling pointers and double freeing.

Memory checkers (e.g., AddressSanitizer,
Valgrind) can assist in finding these pernicious
bugs.

*Do not confuse with a heap data structure.
© 2008-2018 by the MIT 6.172 Lecturers 11

Fixed-Size Allocation

! used used used

"#$$

Free list

used

! Every piece of storage has the same size
! Unused storage has a pointer to next unused block

Bitmap mechanism
! Bit for each block saying whether or not it is free
! Bit tricks for allocation

© 2008-2018 by the MIT 6.172 Lecturers 12

Fixed-Size Allocation

! used used used

"#$$

Free list

used

Allocate 1 object
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
#$,-#+&%(&

© 2008-2018 by the MIT 6.172 Lecturers 13 13

Fixed-Size Allocation

! used used used

"#$$
*

Free list

used

Allocate 1 object
!"#"$%&&'
"#$$%&%"#$$'()$*+,
#$+-#)%*,%

© 2008-2018 by the MIT 6.172 Lecturers 14

Fixed-Size Allocation

! used used used

"#$$
%

Free list

used

Allocate 1 object

Should check
"#$$&,'&-.//.

%&'&"#$$(
!"##$%$!"##&'(#)*+
#$)*#+&%(&

© 2008-2018 by the MIT 6.172 Lecturers 15

Fixed-Size Allocation

! used used used

"#$$
% garbage

Free list

used

pointer Allocate 1 object
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
!"#$!%&'(

© 2008-2018 by the MIT 6.172 Lecturers 16

Fixed-Size Allocation

! used used used

"#$$

Free list

used used

Allocate 1 object
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
#$,-#+&%(&

© 2008-2018 by the MIT 6.172 Lecturers 17

Fixed-Size Deallocation

! used used used

"#$$

%
Free list

used

Allocate 1 object free object %
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
#$,-#+&%(&

%)*+$%,&'&"#$$(
"#$$&'&%(&

© 2008-2018 by the MIT 6.172 Lecturers 18

Fixed-Size Deallocation

! used used used

"#$$

%
Free list

used

Allocate 1 object free object %
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
#$,-#+&%(&

!"#$%!&'(')*%%+
"#$$&'&%(&

© 2008-2018 by the MIT 6.172 Lecturers 19

Fixed-Size Deallocation

! used used used

"#$$

%
Free list

used

Allocate 1 object free object %
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
#$,-#+&%(&

%)*+$%,&'&"#$$(
!"##$%$&'

© 2008-2018 by the MIT 6.172 Lecturers 20 20

Fixed-Size Deallocation

! used used used

"#$$

Free list

used

Allocate 1 object free object %
%&'&"#$$(
"#$$&'&"#$$)*+$%,(
#$,-#+&%(&

%)*+$%,&'&"#$$(
"#$$&'&%(&

© 2008-2018 by the MIT 6.172 Lecturers 21

Free Lists

! used used used

"#$$

Free list

used

!Allocating and freeing take "(1) time.
!Good temporal locality.
! Poor spatial locality due to external fragmentation

— blocks distributed across virtual memory —
which can increase the size of the page table and
cause disk thrashing.
!The translation lookaside buffer (TLB) can also be a

problem.

© 2008-2018 by the MIT 6.172 Lecturers 22

Mitigating External Fragmentation
! Keep a free list (or bitmap) per disk page.
! Allocate from the free list for the fullest page.
! Free a block of storage to the free list for the page

on which the block resides.
! If a page becomes empty (only free-list items), the

virtual-memory system can page it out without
affecting program performance.

! 90-10 is better than 50-50:

>

Probability that 2 random accesses hit the same page
= .9!.9 + .1!.1 = .82 versus .5!.5 + .5!.5 = .5

© 2008-2018 by the MIT 6.172 Lecturers 23

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers

VARIABLE-SIZE
HEAP ALLOCATION

24

Variable-Size Allocation
Binned free lists
! Leverage the efficiency of free lists.
!Accept a bounded amount of internal fragmentation.

0
1
2

!

!

Bin k holds memory
blocks of size 2k.

© 2008-2018 by the MIT 6.172 Lecturers 25

Allocation for Binned Free Lists
Allocate % If bin k = "lg x# is nonempty, return a
x bytes block.

% Otherwise, find a block in the next larger
nonempty bin k& > k, split it up into blocks
of sizes 2k&-1, 2k&-2, …, 2k, 2k, and distribute
the pieces.

0
1
2
3
4
$

© 2008-2018 by the MIT 6.172 Lecturers

Example
x = 3 ! "lg x# = 2.
Bin 2 is empty.

26

Allocation for Binned Free Lists
Allocate " If bin k = #lg x$ is nonempty, return a
x bytes block.

" Otherwise, find a block in the next larger
nonempty bin k% > k, split it up into blocks
of sizes 2k%-1, 2k%-2, …, 2k, 2k, and distribute

© 2008-2018 by the MIT 6.172 Lecturers

0
1
2

4
3

!

the pieces.
Example
x = 3 & #lg x$ = 2.
Bin 2 is empty.

27

Allocation for Binned Free Lists
Allocate " If bin k = #lg x$ is nonempty, return a
x bytes block.

" Otherwise, find a block in the next larger
nonempty bin k% > k, split it up into blocks
of sizes 2k%-1, 2k%-2, …, 2k, 2k, and distribute
the pieces.

0
1
2
3
4
!

© 2008-2018 by the MIT 6.172 Lecturers

return

Example
x = 3 & #lg x$ = 2.
Bin 2 is empty.

28

Allocation for Binned Free Lists
Allocate " If bin k = #lg x$ is nonempty, return a
x bytes block.

" Otherwise, find a block in the next larger
nonempty bin k% > k, split it up into blocks
of sizes 2k%-1, 2k%-2, …, 2k, 2k, and distribute
the pieces.*

Example 0
x = 3 & #lg x$ = 2. 1
Bin 2 is empty. 2

3
4
!

*If no larger blocks exist, ask the
return OS to allocate

29
more memory.

© 2008-2018 by the© 2008 MIT 6.172 Lecturers 2018 by the MIT 6.172 Lecturers

Storage Layout of a Program

high address

virtual
memory

dynamically
allocated

stack

bss

data

text

heap

initialized to 0 at
program start

read from disk

code low address
© 2008-2018 by the MIT 6.172 Lecturers 30

How Virtual is Virtual Memory?

Q. Since a 64-bit address space takes over a
century to write at a rate of 4 billion bytes per
second, we effectively never run out of virtual
memory. Why not just allocate out of virtual
memory and never free?

A. External fragmentation would be horrendous!
The performance of the page table would
degrade tremendously leading to disk
thrashing, since all nonzero memory must be
backed up on disk in page-sized blocks.

Goal of storage allocators
Use as little virtual memory as possible, and try
to keep the used portions relatively compact.

© 2008-2018 by the MIT 6.172 Lecturers 31

Analysis of Binned Free Lists

Theorem. Suppose that the maximum amount of
heap memory in use at any time by a program is M.
If the heap is managed by a BFL allocator, the
amount of virtual memory consumed by heap
storage is O(M lg M).
Proof. An allocation request for a block of size x
consumes 2⌈lg x⌉ ≤ 2x storage. Thus, the amount
of virtual memory devoted to blocks of size 2k is at
most 2M. Since there are at most lg M free lists,
the theorem holds. ■

⇒ In fact, BFL is Θ(1)-competitive with the optimal
allocator (assuming no coalescing).

© 2008-2018 by the MIT 6.172 Lecturers 32

Coalescing

Binned free lists can sometimes be heuristically
improved by splicing together adjacent small
blocks into a larger block.
● Clever schemes exist for finding adjacent blocks

efficiently — e.g., the “buddy” system — but the
overhead is still greater than simple BFL.

● No good theoretical bounds exist that prove the
effectiveness of coalescing.

● Coalescing seems to reduce fragmentation in
practice, because heap storage tends to be
deallocated as a stack (LIFO) or in batches.

© 2008-2018 by the MIT 6.172 Lecturers 33

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers

GARBAGE COLLECTION
BY REFERENCE COUNTING

34

Garbage Collectors
Idea
∙ Free the programmer from freeing objects.
∙ A garbage collector identifies and recycles the

objects that the program can no longer access.
∙GC can be built-in (Java, Python) or do-it-yourself.

35© 2008-2018 by the MIT 6.172 Lecturers 35

Garbage Collection

Terminology
●Roots are objects directly accessible by the

program (globals, stack, etc.).
● Live objects are reachable from the roots by

following pointers.
●Dead objects are inaccessible and can be

recycled.

How can the GC identify pointers?
● Strong typing.
● Prohibit pointer arithmetic (which may slow down

some programs).

© 2008-2018 by the MIT 6.172 Lecturers 36 36

Reference Counting

Keep a count of the number of pointers referencing
each object. If the count drops to 0, free the dead
object.

root

2
1

1

2

1

3

root

root

© 2008-2018 by the MIT 6.172 Lecturers 37

Reference Counting

Keep a count of the number of pointers referencing
each object. If the count drops to 0, free the dead
object.

root

2
1

1

2

1

3

root

root

© 2008-2018 by the MIT 6.172 Lecturers 38

Reference Counting

Keep a count of the number of pointers referencing
each object. If the count drops to 0, free the dead
object.

root

2
1

1

2

1

3

root

root

0

3

© 2008-2018 by the MIT 6.172 Lecturers 39

Reference Counting

Keep a count of the number of pointers referencing
each object. If the count drops to 0, free the dead
object.

root

2
1

1

3

1

3

0

root

root

© 2008-2018 by the MIT 6.172 Lecturers 40

Reference Counting

Keep a count of the number of pointers referencing
each object. If the count drops to 0, free the dead
object.

root

2
1

1

2

1

3

root

root

0

0

2

© 2008-2018 by the MIT 6.172 Lecturers 41

Reference Counting

Keep a count of the number of pointers referencing
each object. If the count drops to 0, free the dead
object.

2
1

1

2

1

3

root

root

root

0

0

2

© 2008-2018 by the MIT 6.172 Lecturers 42

 Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

2
1

1

3

1

1

root

root

© 2008-2018 by the MIT 6.172 Lecturers 43

 Limitation of Reference Counting

Problem
A cycle is never garbage collected!

root

1
1

1

2

3

1 root

root

© 2008-2018 by the MIT 6.172 Lecturers 44

Limitation of Reference Counting

Problem
A cycle is never garbage collected!

2
1

1

3

1

1

root

root

root
Uncollected
garbage
stinks! Nevertheless, reference counting

works well for acyclic structures.
45© 2008-2018 by the MIT 6.172 Lecturers

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 47

MARK-AND-SWEEP
GARBAGE COLLECTION

46

Graph Abstraction

Idea
Objects and pointers
form a directed graph
G = (V, E). Live
objects are reachable
from the roots. Use
breadth-first search to
find the live objects.

!"#$%! &"'($)
*!$%#""+%&(($)
&,-.#/ 0$12
3456363%78$&(2

9$3:;3$&,-.#/ 0$<2

=>*:3$%7$?0$#($)
6$0$@356363%7(2
!"#$%! &"' such that %68&(" A($)
*!$%&,-.#/ 00$<($)
&,-.#/ 0$12
3456363%78$&(2

9$9$9
FIFO queue 7

>3.@ +.*:

© 2008-2018 by the MIT 6.172 Lecturers 47

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 48

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 49

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

!,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 50

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 51

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 52

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 53

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 54

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 55

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 56

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 57

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 58

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & % ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 59

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & % ,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 60

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & % (,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 61

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & % (,

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 62

 Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & % (,

Done!

)&"' -"*.

© 2008-2018 by the MIT 6.172 Lecturers 63

Mark-and-Sweep

Mark stage: Breadth-first search marked all of the live
objects.

Sweep stage: Scan over memory to free unmarked
objects.

Mark-and-sweep doesn’t deal with fragmentation

© 2008-2018 by the MIT 6.172 Lecturers 64

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers

STOP-AND-COPY
GARBAGE COLLECTION

65

Breadth-First Search

!

"

$

%

&

'

(

)

*

+

! # $ ' & % (,

Observation
All live vertices are placed in contiguous storage in ,.

© 2008-2018 by the MIT 6.172 Lecturers 66

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

© 2008-2018 by the MIT 6.172 Lecturers 67

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

© 2008-2018 by the MIT 6.172 Lecturers 68

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

© 2008-2018 by the MIT 6.172 Lecturers 69

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

© 2008-2018 by the MIT 6.172 Lecturers 70

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

© 2008-2018 by the MIT 6.172 Lecturers 71

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

© 2008-2018 by the MIT 6.172 Lecturers 72

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage
using BFS with the TO space as the FIFO queue.

© 2008-2018 by the MIT 6.172 Lecturers 73

Copying Garbage Collector

FROM space

next
allocation

dead

live

unused

When the FROM space is “full,” copy live storage
using BFS with the TO space as the FIFO queue.

allocation

TO space

next

© 2008-2018 by the MIT 6.172 Lecturers 74

Updating Pointers

Since the FROM address of an object is not generally
equal to the TO address of the object, pointers must
be updated.
∙When an object is copied to the TO space, store a

forwarding pointer in the FROM object, which
implicitly marks it as moved.

∙When an object is removed from the FIFO queue in
the TO space, update all its pointers.

© 2008-2018 by the MIT 6.172 Lecturers 75

Example

FROM

TO

!"#$ %#&'

Remove an item from the queue.

© 2008-2018 by the MIT 6.172 Lecturers 76

Example

FROM

TO

!"#$ %#&'

Remove an item from the queue.

© 2008-2018 by the MIT 6.172 Lecturers 77

Example

FROM

TO

!"#$ %#&'

Enqueue adjacent vertices.

© 2008-2018 by the MIT 6.172 Lecturers 78

Example

FROM

TO

!"#$ %#&'

Enqueue adjacent vertices.
Place forwarding pointers in FROM vertices.

© 2008-2018 by the MIT 6.172 Lecturers 79

Example

!"#$ %#&'

FROM

TO

Update the pointers in the removed item to refer
to its adjacent items in the TO space.

© 2008-2018 by the MIT 6.172 Lecturers 80

Example

!"#$ %#&'

FROM

TO

Update the pointers in the removed item to refer
to its adjacent items in the TO space.

© 2008-2018 by the MIT 6.172 Lecturers 81 82

Example

FROM

TO

!"#$ %#&'

Linear time to copy and update all vertices.

© 2008-2018 by the MIT 6.172 Lecturers 82 83

When Is the FROM Space “Full”?

used
FROM

heap

! Request new heap space equal to the used space,
and consider the FROM space to be “full” when
this heap space has been allocated.

! The cost of garbage collection is then
proportional to the size of the new heap space !
amortized O(1) overhead, assuming that the user
program touches all the memory allocated.

! Moreover, the VM space required is O(1) times
optimal by locating the FROM and TO spaces in
different regions of VM where they cannot
interfere with each other.

© 2008-2018 by the MIT 6.172 Lecturers 83

Dynamic Storage Allocation

Lots more is known and unknown about
dynamic storage allocation. Strategies include
● buddy system,
● variants of mark-and-sweep,
● generational garbage collection,
● real-time garbage collection,
● multithreaded storage allocation,
● parallel garbage collection,
● etc.

© 2008-2018 by the MIT 6.172 Lecturers 84

Summary

● Stack: most basic form of storage and is very
efficient when it works

● Heap is the more general form of storage
● Fixed-size allocation using free lists
● Variable-sized allocation using binned free lists
● Garbage collection – reference counting, mark-

and-sweep, stop-and-copy
● Internal and external fragmentation
● You will look at storage allocation in Homework 6

and Project 3

© 2008-2018 by the MIT 6.172 Lecturers 85

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

86

ocw.mit.edu

