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Stack Allocation 

Array and pointer 

used unused 

!" 

# 

Allocate x bytes 
!"$%&$'( 
)*+,)-$!"$. '( 
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Stack Allocation 

Array and pointer 

used unused 

!" 

# 

!"#$%#&' 
$%&'$()!")* +, 

Allocate x bytes 

Should check for 
stack overflow. 
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Stack Allocation 

Array and pointer 

used unused 

!" 

# 

!"$%&$'( 
!"#$!%&'(&) *+ 

Allocate x bytes 

Should check for 
stack overflow. 

© 2008-2018 by the MIT 6.172 Lecturers 5



 

  

Stack Deallocation 

Array and pointer 

used unused ! 

"# 

Allocate x bytes Free x bytes 
"#$%&$'( "#$)&$'( 

*+,-*.$"#$% '( 
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Stack Deallocation 

Array and pointer 

used unused 

!" 

# 

Allocate x bytes Free x bytes 
!"#$%#&' 

Should check for 

!"$%&$'( 
)*+,)-$!"$. '( 

stack underflow. 

© 2008-2018 by the MIT 6.172 Lecturers 7



 

  

 

 

 

Stack Storage 
Array and pointer 

used unused 

!" 

# 

Allocate x bytes Free x bytes 
!"*+,*-. !"*/,*-. 

012304*!"*+ -. 

!Allocating and freeing take "(1) time.
!Must free consistent with stack discipline.
! Limited applicability, but great when it works!
!One can allocate on the call stack using $%%&'$(),

but this function is deprecated, and the compiler is
more efficient with fixed-size frames.
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  Stacks and Heaps 

Image is in the public domain. 
Image is in the public domain. 

Stack Heap 
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Heap Allocation* 
C provides malloc() and free(). 
C++ provides new and delete. 

Unlike Java and Python, C and C++ provide no 
garbage collector.  Heap storage allocated by 
the programmer must be freed explicitly. 
Failure to do so creates a memory leak.  Also, 
watch for dangling pointers and double freeing. 

Memory checkers (e.g., AddressSanitizer, 
Valgrind) can assist in finding these pernicious 
bugs. 

*Do not confuse with a heap data structure.
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Fixed-Size Allocation 

! used used used 

"#$$ 

Free list 

used 

! Every piece of storage has the same size
! Unused storage has a pointer to next unused block

Bitmap mechanism 
! Bit for each block saying whether or not it is free
! Bit tricks for allocation
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Fixed-Size Allocation 

! used used used 

"#$$ 

Free list 

used 

Allocate 1 object 
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
#$,-#+&%(& 
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Fixed-Size Allocation 

! used used used 

"#$$ 
* 

Free list 

used 

Allocate 1 object 
!"#"$%&&' 
"#$$%&%"#$$'()$*+, 
#$+-#)%*,% 
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Fixed-Size Allocation 

! used used used 

"#$$ 
% 

Free list 

used 

Allocate 1 object 

Should check 
"#$$&,'&-.//. 

%&'&"#$$( 
!"##$%$!"##&'(#)*+ 
#$)*#+&%(& 
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Fixed-Size Allocation 

! used used used 

"#$$ 
% garbage 

Free list 

used 

pointer Allocate 1 object 
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
!"#$!%&'( 

© 2008-2018 by the MIT 6.172 Lecturers 16



 

Fixed-Size Allocation 

! used used used 

"#$$ 

Free list 

used used 

Allocate 1 object 
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
#$,-#+&%(& 
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Fixed-Size Deallocation 

! used used used 

"#$$ 

% 
Free list 

used 

Allocate 1 object free object %
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
#$,-#+&%(& 

%)*+$%,&'&"#$$( 
"#$$&'&%(& 

© 2008-2018 by the MIT 6.172 Lecturers 18



 

Fixed-Size Deallocation 

! used used used 

"#$$ 

% 
Free list 

used 

Allocate 1 object free object %
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
#$,-#+&%(& 

!"#$%!&'(')*%%+ 
"#$$&'&%(& 
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Fixed-Size Deallocation 

! used used used 

"#$$ 

% 
Free list 

used 

Allocate 1 object free object %
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
#$,-#+&%(& 

%)*+$%,&'&"#$$( 
!"##$%$&' 
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Fixed-Size Deallocation 

! used used used 

"#$$ 

Free list 

used 

Allocate 1 object free object %
%&'&"#$$( 
"#$$&'&"#$$)*+$%,( 
#$,-#+&%(& 

%)*+$%,&'&"#$$( 
"#$$&'&%(& 
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Free Lists 

! used used used 

"#$$ 

Free list 

used 

!Allocating and freeing take "(1) time.
!Good temporal locality.
! Poor spatial locality due to external fragmentation

— blocks distributed across virtual memory —
which can increase the size of the page table and
cause disk thrashing.
!The translation lookaside buffer (TLB) can also be a

problem.
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Mitigating External Fragmentation 
! Keep a free list (or bitmap) per disk page.
! Allocate from the free list for the fullest page.
! Free a block of storage to the free list for the page

on which the block resides.
! If a page becomes empty (only free-list items), the

virtual-memory system can page it out without
affecting program performance.

! 90-10 is better than 50-50:

> 

Probability that 2 random accesses hit the same page 
= .9!.9 + .1!.1 = .82 versus .5!.5 + .5!.5 = .5 
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Variable-Size Allocation 
Binned free lists 
! Leverage the efficiency of free lists.
!Accept a bounded amount of internal fragmentation.

0 
1 
2 

! 

!

Bin k holds memory
blocks of size 2k. 
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Allocation for Binned Free Lists 
Allocate % If bin k = "lg x# is nonempty, return a 
x bytes block. 

% Otherwise, find a block in the next larger 
nonempty bin k& > k, split it up into blocks 
of sizes 2k&-1, 2k&-2, …, 2k, 2k, and distribute 
the pieces. 

0 
1 
2 
3 
4 
$
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Example 
x = 3 ! "lg x# = 2. 
Bin 2 is empty. 
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Allocation for Binned Free Lists 
Allocate " If bin k = #lg x$ is nonempty, return a 
x bytes block. 

" Otherwise, find a block in the next larger 
nonempty bin k% > k, split it up into blocks 
of sizes 2k%-1, 2k%-2, …, 2k, 2k, and distribute 

© 2008-2018 by the MIT 6.172 Lecturers 

0 
1 
2 

4 
3 

!

the pieces. 
Example 
x = 3 & #lg x$ = 2. 
Bin 2 is empty. 
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Allocation for Binned Free Lists 
Allocate " If bin k = #lg x$ is nonempty, return a 
x bytes block. 

" Otherwise, find a block in the next larger 
nonempty bin k% > k, split it up into blocks 
of sizes 2k%-1, 2k%-2, …, 2k, 2k, and distribute 
the pieces. 

0 
1 
2 
3 
4 
!
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return 

Example 
x = 3 & #lg x$ = 2. 
Bin 2 is empty. 
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Allocation for Binned Free Lists 
Allocate " If bin k = #lg x$ is nonempty, return a 
x bytes block. 

" Otherwise, find a block in the next larger 
nonempty bin k% > k, split it up into blocks 
of sizes 2k%-1, 2k%-2, …, 2k, 2k, and distribute 
the pieces.* 

Example 0 
x = 3 & #lg x$ = 2. 1 
Bin 2 is empty. 2 

3 
4 
!

*If no larger blocks exist, ask the
return OS to allocate 

29
more memory. 
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Storage Layout of a Program 

high address 

virtual 
memory 

dynamically 
allocated 

stack 

bss 

data 

text 

heap 

initialized to 0 at 
program start 

read from disk 

code low address 
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How Virtual is Virtual Memory? 

Q. Since a 64-bit address space takes over a
century to write at a rate of 4 billion bytes per
second, we effectively never run out of virtual
memory. Why not just allocate out of virtual
memory and never free?

A. External fragmentation would be horrendous!
The performance of the page table would
degrade tremendously leading to disk
thrashing, since all nonzero memory must be
backed up on disk in page-sized blocks.

Goal of storage allocators 
Use as little virtual memory as possible, and try 
to keep the used portions relatively compact. 
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Analysis of Binned Free Lists 

Theorem. Suppose that the maximum amount of 
heap memory in use at any time by a program is M.  
If the heap is managed by a BFL allocator, the 
amount of virtual memory consumed by heap 
storage is O(M lg M). 
Proof. An allocation request for a block of size x 
consumes 2⌈lg x⌉ ≤ 2x storage. Thus, the amount 
of virtual memory devoted to blocks of size 2k is at 
most 2M.  Since there are at most lg M free lists, 
the theorem holds. ■

⇒ In fact, BFL is Θ(1)-competitive with the optimal
allocator (assuming no coalescing).
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Coalescing 

Binned free lists can sometimes be heuristically 
improved by splicing together adjacent small 
blocks into a larger block. 
● Clever schemes exist for finding adjacent blocks

efficiently — e.g., the “buddy” system — but the
overhead is still greater than simple BFL.

● No good theoretical bounds exist that prove the
effectiveness of coalescing.

● Coalescing seems to reduce fragmentation in
practice, because heap storage tends to be
deallocated as a stack (LIFO) or in batches.
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Garbage Collectors 
Idea 
∙ Free the programmer from freeing objects.
∙ A garbage collector identifies and recycles the

objects that the program can no longer access.
∙GC can be built-in (Java, Python) or do-it-yourself.
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Garbage Collection 

Terminology 
●Roots are objects directly accessible by the

program (globals, stack, etc.).
● Live objects are reachable from the roots by

following pointers.
●Dead objects are inaccessible and can be

recycled.

How can the GC identify pointers? 
● Strong typing.
● Prohibit pointer arithmetic (which may slow down

some programs).
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Reference Counting 

Keep a count of the number of pointers referencing 
each object.  If the count drops to 0, free the dead 
object. 

root 

2 
1 

1 

2 

1 

3 

root 

root 
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Reference Counting 

Keep a count of the number of pointers referencing 
each object.  If the count drops to 0, free the dead 
object. 

root 

2 
1 

1 

2 

1 

3 

root 

root 
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Reference Counting 

Keep a count of the number of pointers referencing 
each object.  If the count drops to 0, free the dead 
object. 

root 

2 
1 

1 

2 

1 

3 

root 

root 

0 

3 
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Reference Counting 

Keep a count of the number of pointers referencing 
each object.  If the count drops to 0, free the dead 
object. 

root 

2 
1 

1 

3 

1 

3 

0 

root 

root 
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Reference Counting 

Keep a count of the number of pointers referencing 
each object.  If the count drops to 0, free the dead 
object. 

root 

2 
1 

1 

2 

1 

3 

root 

root 

0 

0 

2 
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Reference Counting 

Keep a count of the number of pointers referencing 
each object.  If the count drops to 0, free the dead 
object. 

2 
1 

1 

2 

1 

3 

root 

root 

root 

0 

0 

2 
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   Limitation of Reference Counting 

Problem 
A cycle is never garbage collected! 

root 

2 
1 

1 

3 

1 

1 

root 

root 
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   Limitation of Reference Counting 

Problem 
A cycle is never garbage collected! 

root 

1 
1 

1 

2 

3 

1 root 

root 
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Limitation of Reference Counting 

Problem 
A cycle is never garbage collected! 

2 
1 

1 

3 

1 

1 

root 

root 

root 
Uncollected 
garbage 
stinks! Nevertheless, reference counting 

works well for acyclic structures. 
45© 2008-2018 by the MIT 6.172 Lecturers 



 

!"##$
%&'&(!
"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 47 

MARK-AND-SWEEP 
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Graph Abstraction 

Idea 
Objects and pointers 
form a directed graph 
G = (V, E). Live 
objects are reachable 
from the roots. Use 
breadth-first search to 
find the live objects. 

!"#$%! &"'($)
*!$%#""+%&(($) 
&,-.#/ 0$12 
3456363%78$&(2 

9$3:;3$&,-.#/ 0$<2 

=>*:3$%7$?0$#($)
6$0$@356363%7(2 
!"#$%! &"' such that %68&(" A($)
*!$%&,-.#/ 00$<($) 
&,-.#/ 0$12 
3456363%78$&(2 

9$9$9 
FIFO queue 7

>3.@ +.*: 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

, 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

!, 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & % , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & % , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & % ( , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & % ( , 

)&"' -"*. 
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 Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & % ( , 

Done! 

)&"' -"*. 
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Mark-and-Sweep 

Mark stage: Breadth-first search marked all of the live 
objects. 

Sweep stage: Scan over memory to free unmarked 
objects. 

Mark-and-sweep doesn’t deal with fragmentation 
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Breadth-First Search 

! 

" 
# 

$ 

% 

& 

' 

( 

) 

* 

+ 

! # $ ' & % ( , 

Observation 
All live vertices are placed in contiguous storage in ,. 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 
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Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 

When the FROM space is “full,” copy live storage 
using BFS with the TO space as the FIFO queue. 

© 2008-2018 by the MIT 6.172 Lecturers 73



 

 
     

Copying Garbage Collector 

FROM space 

next 
allocation 

dead 

live 

unused 

When the FROM space is “full,” copy live storage 
using BFS with the TO space as the FIFO queue. 

allocation 

TO space 

next 
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Updating Pointers 

Since the FROM address of an object is not generally 
equal to the TO address of the object, pointers must 
be updated. 
∙When an object is copied to the TO space, store a

forwarding pointer in the FROM object, which
implicitly marks it as moved.

∙When an object is removed from the FIFO queue in
the TO space, update all its pointers.
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Example 

FROM 

TO 

!"#$ %#&' 

Remove an item from the queue. 
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Example 

FROM 

TO 

!"#$ %#&' 

Remove an item from the queue. 

© 2008-2018 by the MIT 6.172 Lecturers 77



 

 

Example 

FROM 

TO 

!"#$ %#&' 

Enqueue adjacent vertices. 
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Example 

FROM 

TO 

!"#$ %#&' 

Enqueue adjacent vertices. 
Place forwarding pointers in FROM vertices. 
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Example 

!"#$ %#&' 

FROM 

TO 

Update the pointers in the removed item to refer 
to its adjacent items in the TO space.  
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Example 

!"#$ %#&' 

FROM 

TO 

Update the pointers in the removed item to refer 
to its adjacent items in the TO space.  
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Example 

FROM 

TO 

!"#$ %#&' 

Linear time to copy and update all vertices. 
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When Is the FROM Space “Full”? 

used 
FROM 

heap 

! Request new heap space equal to the used space,
and consider the FROM space to be “full” when
this heap space has been allocated.

! The cost of garbage collection is then
proportional to the size of the new heap space !
amortized O(1) overhead, assuming that the user
program touches all the memory allocated.

! Moreover, the VM space required is O(1) times
optimal by locating the FROM and TO spaces in
different regions of VM where they cannot
interfere with each other.
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Dynamic Storage Allocation 

Lots more is known and unknown about 
dynamic storage allocation. Strategies include 
● buddy system,
● variants of mark-and-sweep,
● generational garbage collection,
● real-time garbage collection,
● multithreaded storage allocation,
● parallel garbage collection,
● etc.
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Summary 

● Stack: most basic form of storage and is very
efficient when it works

● Heap is the more general form of storage
● Fixed-size allocation using free lists
● Variable-sized allocation using binned free lists
● Garbage collection – reference counting, mark-

and-sweep, stop-and-copy
● Internal and external fragmentation
● You will look at storage allocation in Homework 6

and Project 3
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