
 
 

   

                  
               

    

  

  

               

  
                 

                
  

       

                 
     

   

    
               

   

    

   

 

   

   

 
 

        

    

     

   

 

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 6.172 
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 7 

Homework 4: Reducer Hyperobjects 

In this homework you will experiment with parallelizing in Cilk. You will learn how to detect and solve 
determinacy races in your multithreaded code using Cilk Sanitizer, and how to measure a program’s 
parallelism using the Cilkscale profiler. 

1 Getting started 

[Note: This assignment makes use of AWS and/or Git features which may not be available to 
OCW users.] 

Submitting your solutions 

For each question we ask give short responses of 1–3 sentences. Paste program outputs where 
necessary. 

Reporting performance numbers 

To test the performance of parallel code, you should use awsrun8, a variant of awsrun that submits 
jobs to cloud machines with 8 cores. It’s important to use awsrun8 for all performance numbers 
involving parallel code. 

2 Recitation: Parallelism and race detection using Cilk 

Please answer the checkoff questions on your own and show a TA after you have completed all 
of the questions in this section. 

2.1 Introduction to Cilk 

The cilk_spawn and cilk_sync keywords 

Compile the fib program in the fib/ subdirectory. Then, time the execution for finding fib(45) 

using the time command: 

1 



     

 
 

   
 

  
 

  

   

 

     

 
  

       

     

 

2 Handout 7 — Homework 4: Reducer Hyperobjects 

$ awsrun8 time ./fib 45 

You will get 3 different times as outputs, labeled real, user, and sys. The real time is wall 
time, which is what you see from a clock. The user time is the time a CPU spent in user mode. 
The sys time is the time a CPU spent in the kernel. The sum of user and sys is the actual CPU 
time of the command. Since the current fib is a serial program, you will find that wall time is 
slightly higher than CPU time. 

Next, we want to parallelize the program to take advantage of the other 7 processors on the 
awsrun machines. You can do this by adding cilk_spawn in front of function calls that you want 
to execute in parallel. You also need to add cilk_sync to wait for all spawning tasks to finish. 
Lastly, you should include the Cilk header using 

01 #include <cilk/cilk.h> 

You can specify the number of Cilk workers that execute a program by setting the envi-
ronment variable CILK_NWORKERS. You can specify this variable globally for all Cilk programs 
executed in your bash session by running: 

$ export CILK_NWORKERS=8 

You may also specify the number of Cilk workers to 8 for a single execution of a program by 
prepending CILK_NWORKERS=8 before the command you wish to run. Setting the number of Cilk 
workers is especially useful when executing a Cilk program when using awsrun8. For example, 
you may execute 

$ awsrun8 CILK_NWORKERS=4 ./fib 45 

This command will execute fib on the AWS job queue machines using 4 Cilk workers. You can 
safely ignore errors about not finding the command to set CILK_NWORKERS with awsrun8 such as 
the following: 

[Warning] Cannot find path for command: CILK_NWORKERS=8 

Checkoff Item 1: Parallelize fib using cilk_spawn and cilk_sync, and report the runtime 
when using 1, 4, and 8 Cilk workers. 

You might find that the new version is not faster than the first one (in terms of real time). 
Furthermore, the CPU time is much higher than wall time, because the program uses multiple 
processors to run. Under what circumstances would the parallel version be slower? Try to fix 
your program using “coarsening” to get a parallel speedup. 



   
 

   

 
  

    

     

 

     

  
  

 

     

    

3 Handout 7 — Homework 4: Reducer Hyperobjects 

Checkoff Item 2: Describe your approach to coarsening the program, and report your 
parallel runtime for the coarsened version of fib on 1, 4, and 8 Cilk workers. 

The cilk_for keyword 

The transpose/ subdirectory contains the source code for transpose, an in-place matrix-transpose 
program. As you saw in lecture, you can replace the for loops with cilk_for loops to parallelize 
transpose. 

Checkoff Item 3: Parallelize transpose using cilk_for, and report your runtime with input 
size 10000 for 1, 4, and 8 Cilk workers. 

2.2 The Cilksan race detector 

The Cilksan race detector allows you to check whether your Cilk program has a determinacy 
race. It provides detailed output that specifies the line numbers of two memory locations, often a 
read and a write, that were involved in the race. The Cilksan tool needs the libsnappy package, 
which you can install on your AWS instance with: 

$ sudo apt-get install libsnappy-dev 

Compile and run the qsort-race program in the qsort-race/ subdirectory. This code was 
parallelized by naively adding cilk_spawn and cilk_sync to a serial quicksort program. This 
code has a race! 

Before you run Cilksan, take a look at the quicksort code and see if you can identify the 
determinacy race. See if you can expose the race condition by running a few tests on awsrun8 
too. Don’t be discouraged if you are unable to expose the race by running tests — but also do not 
allow yourself to be fooled! This code does, indeed, have a race. Like many subtle determinacy 
races, the one present in quicksort is difficult to identify without the use of tools. 

We can use Cilksan to detect the race as follows: 

$ make clean; make CILKSAN=1 

We can expose this race on a fairly small input of 10 elements: 

$ ./qsort-race 10 1 



   

     

 

 

  
 

 

 

   

   

 

       

 

4 Handout 7 — Homework 4: Reducer Hyperobjects 

Checkoff Item 4: Use Cilksan to find this race. Then, fix the race, and use Cilksan to 
confirm that no more races exist. Report the line numbers in the code where the read/write 
race occurs, and give a brief description of what was happening to cause this race. 

2.3 The Cilkscale scalability analyzer 

The qsort/ subdirectory contains qsort, another parallel quicksort program. This version of 
quicksort should not have any races, but you should of course verify this by using Cilksan. 

You can use Cilkscale to analyze the scalability of this quicksort program. We have printed 
the scalability information at the end of main in qsort.c: 

02 #ifdef CILKSCALE 
03 print_total(); 
04 #endif 

We can build qsort with Cilkscale as follows: 

$ make CILKSCALE=1 

Since Cilkscale uses timing measurements to compute parallelism, it is usually a good idea 
to run it on a quiesced machine — such as those provided in the AWS job queue. For this 
assignment, however, we recommend you run Cilkscale locally on your AWS instance instead of 
using awsrun. 

Checkoff Item 5: Report the parallelism computed by Cilkscale on the quicksort program 
for a few different sized inputs. 

Cilkscale’s command-line output includes work and span measurements for the Cilk program 
in terms of empirically measured cycle counts, as well as parallelism measurements based on the 
measured work and span. For some programs, such as fib, there may be some variability in the 
reported parallelism numbers. 

Checkoff: Explain your responses to the previous five Checkoff Items to a TA. 

3 Homework: N queens problem and reducers 

We introduced the N Queens Problem in Lecture 3: Bit Hacks. The problem is to place N queens 
on a N × N chessboard so that no queen attacks another (i.e., no two queens in any row, column, 
or diagonal). Review the slides to get a feel for how the backtracking procedure works. 



 
  

 

  

 

  
 

  
    

  
      

  
      

  
     

  
    

              
              
           

           
            

  

  
    

     

   
 

     
 

        
   

5 Handout 7 — Homework 4: Reducer Hyperobjects 

For this homework, our recursive implementation in queens.c (only 12 lines of code!) looks 
for all possible solutions and appends them to a list. It works for N = 8, a standard 8 × 8 
chessboard. We chose N = 8 for two reasons: 

1. Tractable number of solutions. N = 8 only has 92 distinct solutions. N = 16, for example, 
has 14772512 distinct solutions. 

2. Simple board representation. The 8 × 8 squares of the chessboard fit into the bits of a 
uint64_t. 

Lecture 3 represented the board as 3 bit vectors down, left, and right of size N, 2N − 1, and 
2N − 1, respectively. The implementation does better! It uses the same 3 bit vectors, but of size 
N, N, and N only. This result was invented by Tony Lezard and can be found in an email from 
1991: 

Path: gmdzi!unido!mcsun!uknet!slxsys!ibmpcug!mantis!tony 
From: to...@mantis.co.uk (Tony Lezard) 
Newsgroups: rec.puzzles 
Subject: Re: 8 Queens (NO *SPOILER*) 
Message-ID: <eeFmBB1w164w@mantis.co.uk> 
Date: 18 Nov 91 18:47:49 GMT 
References: <1991Nov16.033939.70781@cs.cmu.edu> 
Organization: Mantis Consultants, Cambridge. UK. 
Lines: 40 
redm...@cs.cmu.edu (Redmond English) writes: 
> I wrote a little C program a while ago, which after exhaustively testing 
> every position with exactly one queen on each rank (taking about 1 minute 
> on an 8MHz 68000 machine), came up with 92 solutions. 
Erk. Exhaustive testing? Count me out on that. The following program, 
written in ANSI C, uses a backtracking algorithm and gives the correct 
answer instantaneously: 

#include <stdio.h> 
void try(int, int, int); 
static int count = 0; 

void main() { 
try(0,0,0); 
printf("There are \%d solutions.\n", count); 

} 

void try(int row, int left, int right) { 
int poss, place; 

mailto:redm...@cs.cmu
mailto:1991Nov16.033939.70781@cs.cmu.edu
mailto:eeFmBB1w164w@mantis.co.uk
mailto:to...@mantis.co
mailto:redm...@cs.cmu
mailto:1991Nov16.033939.70781@cs.cmu.edu
mailto:eeFmBB1w164w@mantis.co.uk
mailto:to...@mantis.co


--

6LHandout-7-—-Homework-4:-Reducer-Hyperobjects-

if (row == 0xFF) ++count;

else {

poss = ~(row|left|right) & 0xFF;

while (poss != 0) {

place = poss & -poss;

try(row|place, (left|place)<<1, (right|place)>>1);

poss &= ~place;

}

}

}

ObPuzzle: Generalize the above to n queens.

Tony Lezard IS to...@mantis.co.uk OR tony\%man...@uknet.ac.uk

OR EVEN ar...@phx.cam.ac.uk if all else fails. Great! Kept my .sig down to two

lines!

Write-up 1: (Bonus) HowLdoesLtheLcodeLsnippetLaboveLwork?LWhyLdoLyouLonlyLneedLN-bitsL
forLeachLvector?L

OurLqueens implementationLusesLthreeLbitLvectors,LwhereL0sLrepresentLavailableLsquaresLandL1sL
representLunavailableLsquares.LTherefore,LtheLdown,Lleft,LandLright startLasLallL0sLandLgetLfilledL
withL1sLasLtheLqueensLareLplaced.L

3.1 It’s a race, but no one is winning.

CompileLandLrunL./queens.LRecordLtheLserialLexecutionLtime.L
Let’sLseeLifLweLcanLgetLanyLspeedupsLfromLparallelization.L InLtheLqueens function,LaddL

cilk_spawn andLcilk_sync keywordsLtoLparallelizeLtheLrecursiveLcallsLtoLqueens.LCompileLandL
runL./queens withLawsrun8.L

WhenLrunningLaLCilkLprogram,LyouLmayLspecifyLtheLnumberLofLworkerLthreadsLyou’dLlikeLtoL
useLbyLsettingLtheLenvironmentLvariableLCILK_NWORKERS.LSpecifyingLtheLnumberLofLCilkLworkersL
canLbeLdoneLbyLaddingLexport CILK_NWORKERS=W (whereLW- isLanLintegerLgreaterLthanL0)LinLtheL
commandLlineLbeforeL./queens.LMostLofLtheLtime,LyouLwon’tLhaveLtoLexplicitlyLsetLthisLvariableL
becauseLitLdefaultsLtoLtheLnumberLofLcoresLonLtheLsystem.L ALgoodLplaceLtoLfindLCilk-relatedL
referenceLinformationLisLhttps://www.cilkhub.org.https://www.cilkhub.org.cilk.mit.edu.

mailto:ar...@phx.cam.ac
mailto:tony\%man...@uknet.ac
mailto:to...@mantis.co
cilk.mit.edu


  

  
          

      
  

 

  

    

   

 
 

     

   
    

 

  
 

7 Handout 7 — Homework 4: Reducer Hyperobjects 

Write-up 2: What happened when you ran ./queens? Did parallelization do what you 
expected? 

Something went wrong. Let’s use the Cilksan tool to detect the problem. Cilksan will take too 
long to finish with the current build, so comment out the loop which runs run_queens I times in 
the main function. Remember to uncomment the loop before recording performance numbers 
for the remainder of the homework. 

Now compile with Cilksan. The clang option -fsanitize=cilk triggers compilation with 
Cilksan, and you can build with it automatically by running make CILKSAN=1. The resulting 
binary will run with Cilksan code built-in. 

Write-up 3: Was Cilksan able to detect the problem? Describe the race condition briefly in 
words, and report the relevant line numbers for the read and write involved in the race. 

3.2 Fixing the race 

Remove cilk_spawn and cilk_sync keywords from the queens function. Before re-parallelizing 
our code, we want to make any accesses to the list of solutions, board_list, thread-safe. 

Here’s one strategy that doesn’t require mutual exclusion locks: instead of passing in board_list 
to the recursive calls to queens, we can create a bunch of temporary BoardList objects and pass 
in a different one to each recursive thread. When the threads synchronize, all of the temporary 
lists will have been filled, and we can concatenate them all together with the original board_list. 

In queens.c, implement 

05 void merge_lists(BoardList* list1, BoardList* list2); 

The function should merge list2 into list1 and then reset list2 to be empty. For example, 
say list1 has 3 nodes and list2 has 5 nodes. After a call to merge_lists(list1, list2), list1 
should have 8 nodes and list2 should be empty. We’ll use this call to concatenate several lists 
together. Remember to handle cases where one or both of the lists are empty and to update all 3 
fields of BoardList. 

Write-up 4: What is the most efficient way to concatenate two singly linked lists? What is 
the asymptotic running time of your merge_lists function? 



 
 

  

 
        

       

  

   

 

 

 
 

    

 

              

8 Handout 7 — Homework 4: Reducer Hyperobjects 

Now, implement the strategy of passing in temporary lists to the recursive calls and merging 
them at the end. Compile and run ./queens to make sure your serial code is still correct. If it is, 
re-parallelize the code with cilk_spawn and cilk_sync. Run Cilksan to verify that there are no 
races. Then record the parallel execution time. 

Write-up 5: Briefly explain your implementation. How does the parallel code perform 
compared to the serial code? Try to explain any difference in performance. 

Recall that, in Homework 2, you coarsened the recursion of merge sort. Coarsen the recursion 
of queens so that if it hits a base case, then it uses the original implementation. Record the 
new parallel execution time. Remember to uncomment the loop before recording performance 
numbers for the remainder of the homework. 

Write-up 6: What is the base case you used? How does the parallel code with coarsening 
perform compared to the parallel code without? Try to explain any difference in 
performance. How does it perform compared to the serial code? 

3.3 Cilk reducers 

Background 

Cilk provides a unique programming construct called a reducer hyperobject, or reducer. Concep-
tually, a reducer is a variable that can be safely used by multiple Cilk strands running in parallel. 
In a parallel execution of a program, the Cilk runtime maintains multiple views of a reducer. 
The runtime eliminates the possibility of a race by ensuring that each view can be accessed by 
only one Cilk strand at a time. After all parallel strands have been synchronized (i.e., after a 
cilk_sync), Cilk guarantees that all views of a reducer have been merged together into a single 
view. In Cilk, reducers are based on “monoids,” and thus Cilk guarantees that a parallel exe-
cution of a program updates a reducer and merge views in a way that is equivalent to a serial 
execution of the same program. 

More precisely, a monoid is an algebraic structure on a set of elements T with an associative 
binary operator ⊕ and an identity element e. As a simple example, for an integer sum monoid, 
T is Z (the set of integers), ⊕ is + (integer addition), and the identity is e = 0. 

The serial execution of a Cilk program typically performs a sequence of updates to a reducer 
X, which correspond to a sequence of ⊕ operations with elements xi drawn from T. For example, 
consider a program with a reducer X with initial value x0, and suppose that a serial execution 
of the program performs a sequence of updates x1, x2, . . . , x7 to a reducer X. The serial execution 
combines these updates one at a time, i.e., it produces a final value for X of 

(((((((x0 ⊕ x1) ⊕ x2) ⊕ x3) ⊕ x4) ⊕ x5) ⊕ x6) ⊕ x7) . (1) 



   

              

 

               

 
      

                

                  

    

 

9 Handout 7 — Homework 4: Reducer Hyperobjects 

Because ⊕ is associative and has an identity element e, however, other ways to combine these 
updates also produce the same final result. For example, one could also combine updates as 
follows: 

((((x0 ⊕ x1) ⊕ x2) ⊕ x3) ⊕ x4) ⊕ (((e ⊕ x5) ⊕ x6) ⊕ x7) , (2) 

and still produce the same result. The original serial execution order in Equation (1) uses a single 
view of X, updates occur sequentially. In contrast, the execution represented by Equation (2) uses 
two views, one for value (x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4), and one for the value (x5 ⊕ x6 ⊕ x7). Having 
two views allows two processors to update X in parallel without races. 

More generally, a parallel execution may create more reducer views and combine them in 
more complicated but equivalent ways. For example, Equation (3) uses three views, and Equa-
tion (4) uses five views. 

(((x0 ⊕ x1) ⊕ x2) ⊕ ((e ⊕ x3) ⊕ x4)) ⊕ (((e ⊕ x5) ⊕ x6) ⊕ x7) (3) 

((x0 ⊕ ((e ⊕ x1) ⊕ x2)) ⊕ ((e ⊕ x3) ⊕ x4)) ⊕ (((e ⊕ x5) ⊕ (e ⊕ x6)) ⊕ x7) (4) 

In summary, reducers exhibit several attractive properties: 

• Multiple strands can access a reducer without races. 

• Reducers are shared without the need for mutual exclusion locks. 

• Reducers can be used without significantly restructuring existing code. 

• Defined and used correctly, reducers retain serial semantics. The result of a Cilk program 
that uses reducers is the same as the serial version, and the result does not depend on the 
number of processors or how the work is scheduled. 

• Reducers are implemented efficiently, incurring little or no runtime overhead for synchro-
nization. The cost of accessing a reducer is a hash-table lookup. 

Implementing your own reducer 

Cilk comes with a library of predefined reducers which support many commonly used monoids. 

Here’s an example usage of the + reducer: 



  

  
   

 
         

   
 

          
 

 

   

  

       
          

        
        

        
        

  
 

10 Handout 7 — Homework 4: Reducer Hyperobjects 

06 #include <cilk/reducer_opadd.h> 
07 

08 // ... 
09 CILK_C_REDUCER_OPADD(r, double, 0); 
10 CILK_C_REGISTER_REDUCER(r); 
11 cilk_for(int i = 0; i != n; ++i) { 
12 REDUCER_VIEW(r) += A[i]; 
13 } 
14 printf("The sum of the elements of A is %f\n", REDUCER_VIEW(r)); 
15 CILK_C_UNREGISTER_REDUCER(r); 

Since the list of boards queens() generates is not ordered, we can use a reducer to assemble 
it. 

Write-up 7: How can a BoardListReducer help you to avoid creating the temporary lists in 
Section 3.2? Define the monoid: What type of objects will the reducer operate on? What is 
the associative binary operator? What is the identity object? 

Unfortunately, Cilk did not come with a BoardListReducer, so let’s implement our own in 6 easy 
steps: 

1. Include the Cilk reducer header in your code: 

16 #include <cilk/reducer.h> 

2. Define the behavior of the reducer in 3 functions: 

17 // Evaluates *left = *left OPERATOR *right. 
18 void board_list_reduce(void* key, void* left, void* right) { ... } 
19 

20 // Sets *value to the the identity value. 
21 void board_list_identity(void* key, void* value) { ... } 
22 

23 // Destroys any dynamically allocated memory. Hint: delete_nodes. 
24 void board_list_destroy(void* key, void* value) { ... } 

Remember to cast the void* arguments to BoardList* before using them. You don’t have to 
worry about the key argument (although you might see why it’s there, since we previously 
mentioned a hash-table lookup). 



   

      
     

               

 
 

 

 

 

 

  
 

           
      

     

11 Handout 7 — Homework 4: Reducer Hyperobjects 

3. Instantiate the reducer type: 

25 typedef CILK_C_DECLARE_REDUCER(BoardList) BoardListReducer; 

4. Initialize the reducer for use (it’s easiest to put it in global scope): 

26 BoardListReducer X = CILK_C_INIT_REDUCER(BoardList, // type 
27 board_list_reduce, board_list_identity, board_list_destroy, // functions 
28 (BoardList) { .head = NULL, .tail = NULL, .size = 0 }); // initial value 

5. You must register and unregister the reducer before and after use. After the declaration of 
the reducer, but before the first use, insert CILK_C_REGISTER_REDUCER(X) to register. When 
the reducer is no longer needed, insert CILK_C_UNREGISTER_REDUCER(X) to unregister. 

6. Use REDUCER_VIEW(X) to access the value. In this case, it will return a BoardList. 

7. Once all parallel execution has completed, use X.value to query the final value of the 
reducer. 

The full details are at: 

http://software.intel.com/en-us/articles/using-an-intel-cilk-plus-reducer-in-c 

You can find a good tutorial with a working example at: 

https://www.cilkplus.org/docs/doxygen/include-dir/page_reducers_in_c.html 

Write-up 8: Use a reducer to parallelize queens. Record the parallel execution time using 
awsrun8 ./queens. Verify that the answers you’re getting are consistent with the serial code 
from before. Note: Cilksan may report races if you do not explicitly call 
__cilksan_disable_checking() and __cilksan_enable_checking() before and after 
accesses to the reducer object. How does the parallel code with reducers perform 
compared to the parallel code without? 

http://software.intel.com/en-us/articles/using-an-intel-cilk-plus-reducer-in-c
https://www.cilkplus.org/docs/doxygen/include-dir/page_reducers_in_c.html


 
 

 
 

 

MIT OpenCourseWare 
https://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Getting started
	Recitation: Parallelism and race detection using Cilk
	Introduction to Cilk
	The Cilksan race detector
	The Cilkscale scalability analyzer

	Homework: N queens problem and reducers
	Fixing the race
	Cilk reducers

	cover.pdf
	Blank Page




