6.172 Performance Engineering of Software Systems

# LECTURE 15 Cache-Oblivious Algorithms

#### Julian Shun



© 2008–2018 by the MIT 6.172 Lecturers

#### SIMULATION OF HEAT DIFFUSION

© 2008–2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

PER ORDER OF 6.172

#### **Heat Diffusion**



2D heat equation

Let u(t, x, y) = temperatureat time t of point (x, y).



 $\alpha$  is the *thermal diffusivity*.

Acknowledgment Some of the slides in this presentation were inspired by originals due to Matteo Frigo.

© 2008–2018 by the MIT 6.172 Lecturers

#### **2D Heat-Diffusion Simulation**



#### **1D Heat Equation**

$$\frac{\partial \mathsf{u}}{\partial \mathsf{t}} = \alpha \frac{\partial^2 \mathsf{u}}{\partial \mathsf{x}^2}$$

# **Finite-Difference Approximation**

$$\begin{split} \frac{\partial u}{\partial t} &= \alpha \frac{\partial^2 u}{\partial x^2} \qquad \qquad \frac{\partial}{\partial t} u \ t \ x \ ) \approx \frac{u \ t \ +\Delta t \ x \ ) - u \ t \ x}{\Delta t} \ , \\ \frac{\partial}{\partial x} u \ t \ x \ ) \approx \frac{u \ t \ x \ +\Delta x/2 \ ) - u \ t \ x - \Delta x/2}{\Delta x} \ , \\ \frac{\partial^2}{\partial x^2} u \ t \ x \ &\approx \ \frac{\frac{\partial}{\partial x} u \ t \ x \ +\Delta x/2 \ ) - \frac{\partial}{\partial x} u \ t \ x - \Delta x/2}{\Delta x} \end{split}$$

The 1D heat equation thus reduces to

$$\frac{\mathsf{u} \mathsf{t} + \Delta \mathsf{t} \mathsf{x}) - \mathsf{u} \mathsf{t} \mathsf{x}}{\Delta \mathsf{t}} = \alpha \left( \frac{\mathsf{u} \mathsf{t} \mathsf{x} + \Delta \mathsf{x}) - 2\mathsf{u} \mathsf{t} \mathsf{x}}{(\Delta \mathsf{x}^2)} + \frac{\mathsf{u} \mathsf{t} \mathsf{x} - \Delta \mathsf{x}}{(\Delta \mathsf{x}^2)} \right)$$

# **3–Point Stencil**





#### CACHE-OBLIVIOUS STENCIL COMPUTATIONS

© 2008–2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

PER ORDER OF 6.172

#### **Recall: Ideal-Cache Model**

Ρ

 $\mathcal{M}/\mathcal{B}$ 

cache lines

#### Parameters

- Two-level hierarchy.
- Cache size of  $\mathcal M$  bytes.
- Cache-line length (block size) of  $\mathcal{B}$  bytes.
- Fully associative.
- Optimal omniscient replacement, or LRU.

Performance Measures

- work W (ordinary running time)
- cache misses Q



# **Cache Behavior of Looping**

double u[2][N]; // even-odd trick

```
static inline double kernel(double * w) {
    return w[0] + ALPHA * (w[-1] - 2*w[0] + w[1]);
}
```

```
for (size_t t = 1; t < T-1; ++t) { // time loop
   for(size_t x = 1; x < N-1; ++x) // space loop
        u[(t+1)%2][x] = kernel( &u[t%2][x] );</pre>
```



Assuming LRU, if  $N > \mathcal{M}$ , then  $Q = \Theta(NT/\mathcal{B})$ .

#### Cache-Oblivious 3-Point Stencil

Recursively traverse trapezoidal regions of space-time points (t,x) such that



#### **Base Case**

If height = 1, compute all space-time points in the trapezoid. Any order of computation is valid, since no point depends on another.



# **Space Cut**

If width  $\ge 2 \cdot \text{height}$ , cut the trapezoid with a line of slope -1 through the center. Traverse the trapezoid on the left first, and then the one on the right.



#### Time Cut

If width  $< 2 \cdot$  height, cut the trapezoid with a horizontal line through the center. Traverse the bottom trapezoid first, and then the top one.



#### **C** Implementation

```
void trapezoid(int64_t t0, int64_t t1, int64_t x0, int64_t dx0,
               int64_t x1, int64_t dx1)
{
  int64_t lt = t1 - t0;
  if (lt == 1) { //base case
      for (int64_t x = x0; x < x1; x++)
        u[t1%2][x] = kernel( &u[t0%2][x] );
  } else if (lt > 1) {
    if (2 * (x1 - x0) + (dx1 - dx0) * lt >= 4 * lt) { //space cut}
      int64_t xm = (2 * (x0 + x1) + (2 + dx0 + dx1) * lt) / 4;
      trapezoid(t0, t1, x0, dx0, xm, -1);
      trapezoid(t0, t1, xm, -1, x1, dx1);
    } else { //time cut
      int64_t halflt = lt / 2;
      trapezoid(t0, t0 + halflt, x0, dx0, x1, dx1);
      trapezoid(t0 + halflt, t1, x0 + dx0 + halflt, dx0,
                x1 + dx1 + halflt, dx1);
    }
```

# **Cache Analysis**



- Each leaf represents  $\Theta(hw)$  points, where  $h = \Theta(w)$ .
- Each leaf incurs  $\Theta(w/B)$  misses, where  $w = \Theta(M)$ .
- Θ(NT/hw) leaves.
- #internal nodes = #leaves 1 do not contribute substantially to Q.
- $Q = \Theta(NT/hw) \cdot \Theta(w/B) = \Theta(NT/M^2) \cdot \Theta(M/B) = \Theta(NT/MB).$
- For d dimensions,  $Q = \Theta(NT / \mathcal{M}^{1/d}\mathcal{B})$

© 2008–2018 by the MIT 6.172 Lecturers

#### Simulation: 3-Point Stencil

Rectangular region
N = 95
T = 87



- Cache-hit latency = 1 cycle
- Cache-miss latency = 10 cycles

# Looping v. Trapezoid on Heat



#### **Impact on Performance**

- Q. How can the cache-oblivious trapezoidal decomposition have so many fewer cache misses, but the advantage gained over the looping version be so marginal?
- A. Prefetching and a good memory architecture. One core cannot saturate the memory bandwidth.



#### CACHING AND PARALLELISM

© 2008–2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

PER ORDER OF 6.172

# **Cilk and Caching**

**Theorem.** Let  $Q_P$  be the number of cache misses in a deterministic Cilk computation when run on P processors, each with a private cache, and let  $S_P$  be the number of successful steals during the computation. In the ideal-cache model, we have

 $Q_P = Q_1 + O(S_P \mathcal{M} / \mathcal{B})$ ,

where  $\mathcal{M}$  is the cache size and  $\mathcal{B}$  is the size of a cache block.

**Proof.** After a worker steals a continuation, its cache is completely cold in the worst case. But after  $\mathcal{M}/\mathcal{B}$  (cold) cache misses, its cache is identical to that in the serial execution. The same is true when a worker resumes a stolen subcomputation after a cilk\_sync. The number of times these two situations can occur is at most 2S<sub>P</sub>.

MORAL: Minimizing cache misses in the serial elision essentially minimizes them in parallel executions.

# Does this work in parallel?

Space cut: If width  $\ge 2 \cdot \text{height}$ , cut the trapezoid with a line of slope -1 through the center. Traverse the trapezoid on the left first, and then the one on the right.



#### **Parallel Space Cuts**



#### **Parallel Space Cuts**





A *parallel space cut* produces two black trapezoids that can be executed in parallel and a third gray trapezoid that executes in series with the black trapezoids.

t

Х

# Parallel Looping v. Parallel Trap.



#### Performance Comparison

Heat equation on a  $3000 \times 3000$  grid for 1000 time steps (4 processor cores with 8MB LLC)

| Code                 | Time    |   |       |
|----------------------|---------|---|-------|
| Serial looping       | 128.95s | 2 | 1.02  |
| Parallel looping     | 66.97s  | S | 1.938 |
| Serial trapezoidal   | 66.76s  | 2 | 2 064 |
| Parallel trapezoidal | 16.86s  | S | 2.30X |

The parallel looping code achieves less than half the potential speedup, even though it has far more parallelism.

#### **Memory Bandwidth**



# Impediments to Speedup

✓ Insufficient parallelism
 ✓ Scheduling overhead
 ✓ Lack of memory bandwidth
 ✓ Contention (locking and true/false sharing)

Cilkscale can diagnose the first two problems.

- Q. How can we diagnose the third?
- A. Run P identical copies of the serial code in parallel if you have enough memory.

Tools exist to detect lock contention in an execution, but not the *potential* for lock contention. Potential for true and false sharing is even harder to detect.

#### CACHE-OBLIVIOUS SORTING

© 2008–2018 by the MIT 6.172 Lecturers

SPEED

LIMIT

PER ORDER OF 6.172

# OUTLINE

- Simulation of Heat Diffusion
- Cache-Oblivious Stencil
   Computations
- Caching and Parallelism
- Cache–Oblivious Sorting

# **Merging Two Sorted Arrays**



```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```



```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```

```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```

```
void merge_sort(int64_t *B, int64_t *A, int64_t n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        int64_t C[n];
        cilk_spawn merge_sort(C, A, n/2);
            merge_sort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        merge(B, C, n/2, C+n/2, n-n/2);
    }
}
```






## Merge Sort





© 2008–2018 by the MIT 6.172 Lecturers

## Merge Sort



© 2008–2018 by the MIT 6.172 Lecturers

### Work of Merge Sort



**Solve**  $W(n) = 2W(n/2) + \Theta(n)$ .

W(n)



















### Now with Caching

#### Merge subroutine

 $Q(n) = \Theta(n/B)$ .

#### Merge sort

$$Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$$

 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \le c\mathcal{M}, \text{ constant } c \le 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$ 

**Recursion tree** 

Q(n)

 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$ 



 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \le c\mathcal{M}, \text{ constant } c \le 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$ 



 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \le c\mathcal{M}, \text{ constant } c \le 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$ 



 $Q(n) = \begin{cases} \Theta(n/B) & \text{if } n \leq c\mathcal{M}, \text{ constant } c \leq 1; \\ 2Q(n/2) + \Theta(n/B) & \text{otherwise.} \end{cases}$ 

Recursion tree



 $Q(n) = \Theta((n / B) lg(n / M))$ 

## **Bottom Line for Merge Sort**

 $\begin{aligned} \mathsf{Q}(\mathsf{n}) &= \begin{cases} \Theta(\mathsf{n}/\mathcal{B}) & \text{if } \mathsf{n} \leq \mathsf{c}\mathcal{M}, \text{ constant } \mathsf{c} \leq 1; \\ 2\mathsf{Q}(\mathsf{n}/2) + \Theta(\mathsf{n}/\mathcal{B}) & \text{otherwise;} \end{cases} \\ &= \Theta((\mathsf{n}/\mathcal{B}) \lg(\mathsf{n}/\mathcal{M})). \end{aligned}$ 

- For  $n \gg \mathcal{M}$ , we have  $\lg(n/\mathcal{M}) \approx \lg n$ , and thus  $W(n)/Q(n) \approx \Theta(\mathcal{B})$ .
- For  $n \approx \mathcal{M}$ , we have  $\lg(n/\mathcal{M}) \approx \Theta(1)$ , and thus  $W(n)/Q(n) \approx \Theta(\mathcal{B} \lg n)$ .











## Work of Multiway Merge Sort





### **Caching Recurrence**

Assume that we have  $R < c\mathcal{M}/\mathcal{B}$  for a sufficiently small constant  $c \leq 1$ .

Consider the R-way merging of contiguous arrays of total size n. If  $R < c\mathcal{M}/\mathcal{B}$ , the entire tournament plus 1 block from each array can fit in cache.  $\Rightarrow Q(n) \leq \Theta(n/\mathcal{B})$  for merging.

#### R-way merge sort

 $Q(n) \leq \begin{cases} \Theta(n/\mathcal{B}) & \text{if } n < c\mathcal{M}; \\ R \cdot Q(n/R) + \Theta(n/\mathcal{B}) & \text{otherwise.} \end{cases}$ 

### **Cache Analysis**



#### **Tuning the Voodoo Parameter**

We have

 $Q(n) = \Theta((n/B) \log_{R}(n/M))$ ,

which decreases as  $R \le c\mathcal{M}/\mathcal{B}$  increases. Choosing R as big as possible yields  $R = \Theta(\mathcal{M}/\mathcal{B})$ .

By the tall-cache assumption and the fact that  $\log_{\mathcal{M}}(n/\mathcal{M}) = \Theta((\lg n)/\lg \mathcal{M})$ , we have

$$\begin{aligned} \mathsf{Q}(\mathsf{n}) &= \Theta((\mathsf{n}/\mathcal{B}) \log_{\mathcal{M}/\mathcal{B}}(\mathsf{n}/\mathcal{M})) \\ &= \Theta((\mathsf{n}/\mathcal{B}) \log_{\mathcal{M}}(\mathsf{n}/\mathcal{M})) \\ &= \Theta((\mathsf{n} \lg \mathsf{n})/\mathcal{B} \lg \mathcal{M}) . \end{aligned}$$

Hence, we have  $W(n)/Q(n) \approx \Theta(\mathcal{B} \lg \mathcal{M})$ .

### **Multiway versus Binary Merge Sort**

We have

$$Q_{multiway}(n) = \Theta((n \lg n) / \mathcal{B} \lg \mathcal{M})$$

versus

$$Q_{\text{binary}}(n) = \Theta((n/\mathcal{B}) \lg(n/\mathcal{M}))$$
  
=  $\Theta((n \lg n)/\mathcal{B})$ ,

as long as  $n \gg \mathcal{M}$ , because then  $\lg(n/\mathcal{M}) \approx \lg n$ . Thus, multiway merge sort saves a factor of  $\Theta(\lg \mathcal{M})$  in cache misses.

**Example** (ignoring constants)

• L1–cache:  $\mathcal{M} = 2^{15} \Rightarrow 15 \times \text{ savings.}$ 

• L2–cache:  $\mathcal{M} = 2^{18} \Rightarrow 18 \times \text{ savings.}$ 

• L3-cache:  $\mathcal{M} = 2^{23} \Rightarrow 23 \times \text{savings}$ .

## **Optimal Cache-Oblivious Sorting**

#### Funnelsort [FLPR99]

- 1. Recursively sort  $n^{1/3}$  groups of  $n^{2/3}$  items.
- 2. Merge the sorted groups with an  $n^{1/3}$ -funnel.

A k-funnel merges k<sup>3</sup> items in k sorted lists, incurring at most

$$\Theta(\mathbf{k} + (\mathbf{k}^3/\mathcal{B})(1 + \log_{\mathcal{M}} \mathbf{k}))$$

cache misses. Thus, funnelsort incurs

$$\begin{split} \mathsf{Q}(\mathsf{n}) &\leq \mathsf{n}^{1/3} \mathsf{Q}(\mathsf{n}^{2/3}) + \Theta(\mathsf{n}^{1/3} + (\mathsf{n}/\mathsf{b})(1 + \log_{\mathcal{M}}\mathsf{n})) \\ &= \Theta(1 + (\mathsf{n}/\mathcal{B})(1 + \log_{\mathcal{M}}\mathsf{n})) \,, \end{split}$$

cache misses, which is asymptotically optimal [AV88].

# **Construction of a k-funnel**



### **Other C–O Algorithms**

Matrix Transposition/Addition $\Theta(1+mn/B)$ Straightforward recursive algorithm.

**Strassen's Algorithm**  $\Theta(n + n^2/\mathcal{B} + n^{\lg 7}/\mathcal{BM}^{(\lg 7)/2 - 1})$ Straightforward recursive algorithm.

**Fast Fourier Transform**  $\Theta(1 + (n/\mathcal{B})(1 + \log_{\mathcal{M}} n))$ Variant of Cooley–Tukey [CT65] using cache– oblivious matrix transpose.

**LUP–Decomposition**  $\Theta(1 + n^2/\mathcal{B} + n^3/\mathcal{BM}^{1/2})$ Recursive algorithm due to Sivan Toledo [T97].

### **C-O Data Structures**

#### **Ordered-File Maintenance**

#### $O(1 + (lg^2n)/B)$

INSERT/DELETE or delete anywhere in file while maintaining O(1)-sized gaps. Amortized bound [BDFC00], later improved in [BCDFC02].

| B–Trees | INSERT/DELETE: | $O(1+\log_{\mathcal{B}+1}n+(\lg^2n)/\mathcal{B})$ |
|---------|----------------|---------------------------------------------------|
|         | Search:        | $O(1 + \log_{\mathcal{B}+1}n)$                    |
|         | TRAVERSE:      | O(1+k/B)                                          |

Solution [BDFC00] with later simplifications [BDIW02], [BFJ02].

**Priority Queues** 

 $O(1+(1/\mathcal{B})\log_{\mathcal{M}/\mathcal{B}}(n/\mathcal{B}))$ 

Funnel-based solution [BF02]. General scheme based on buffer trees [ABDHMM02] supports INSERT/DELETE.

© 2008–2018 by the MIT 6.172 Lecturers



#### 6.172 Performance Engineering of Software Systems Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.