6.172 . - @
Performance I I I E I SPEED
Engineering LIMIT
of Software

Systems w

PER ORDER OF 6.172

Introduction &
Matrix Multiplication
Charles E. Leiserson

© 2008-2018 by the MIT 6.172 Lecturers

" SPEED
LIMIT

OO

PER ORDER OF 6.172

WHY PERFORMANCE
ENGINEERING?

© 2008-2018 by the MIT 6.172 Lecturers

What software properties are more important
than performance?

o Compatibility ¢ Functionality » Reliability

o Correctness o Maintainability ¢ Robustness

o Clarity o Modularity o Testability

o Debuggability e Portability o Usability
....and more.

If programmers are Performance is the
willing to sacrifice currency of computing.
performance for these You can often “buy”
properties, why study needed properties with
performance? performance.

© 2008-2018 by the MIT 6.172 Lecturers 3

Computer Programming in the Early Days

Software performance engineering was common,
because machine resources were limited.

IBM System /360

IBM

DEC PDP-11 Apple Il

—

s

W == o = — L : k|

Courtesy of alihodza on Flickr. Courtesy of jonrb on Flickr. Courtesy of mwichary on Flickr.

Used under CC-BY-NC. Used under CC-_BY-NC. Used under CC-BY.
Launched: 1964 Launched: 1970 Launched: 1977
Clock rate: 33 KHz Clock rate: 1.25 MHz Clock rate: 1 MHz
Data path: 32 bits Data path: 16 bits Data path: 8 bits
Memory: 524 Kbytes Memory: >6 Kbytes Memory: 48 Kbytes
Cost: $5,000/month Cost: $20,000 Cost: $1,395

Many programs strained the machine’s resources.
e Programs had to be planned around the machine.

e Many programs would not “fit” without intense
performance engineering.

© 2008-2018 by the MIT 6.172 Lecturers 4

https://www.flickr.com/photos/mwichary/2151368358/
https://www.flickr.com/photos/jonrb/7863994938/
https://flic.kr/p/j2DtS5

Premature optimization is
the root of all evil. [K79]

Donald Knut : : : :
"More computing sins are committed in the

name of efficiency (without necessarily
achieving it) than for any other single

. reason — including blind stupidity. [W79]

" The First Rule of Program William Wulf
Optimization: Don’t do it.
Michael Jackson | The Second Rule of Program
Optimization — For experts
only: Don’t do it yet. [J88]

© 2008-2018 by the MIT 6.172 Lecturers

1,000,000
100,000 o &’
()
Normalized
10,000 transistor count |
1,000 o\‘*
100 o ® ce
o o ® %o
(Y) t ?
10 . Moore’s Law
o
1 : &
0

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Processor data from Stanford’s CPU DB [DkMm12].
© 2008-2018 by the MIT 6.172 Lecturers 6

1,000,000
100,000 °o &
®
Normalized
10,000 transistor count
1,000 .
“ Clock speed (MHz)
100 0%

[J ¢ L 7N @ ”‘“‘

10 . 02 ** . “Dennard scaling’ |
_ o

1

0
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Processor data from Stanford’s CPU DB [Dkm12].

© 2008-2018 by the MIT 6.172 Lecturers 4

Advances in Hardware

Apple computers with similar prices from 1977 to 2004

a2 |
Courtesy of mwichary on Flickr.
Used under CC-BY.

Apple |l

Launched: 1977
Clock rate: 1 MHz
Data path: 8 bits
Memory: 48 KB
Cost: $1,395

© 2008-2018 by the MIT 6.172 Lecturers

&,
X 4

Courtesy of compudemano on

Flickr. Used under CC-BY.
Power Macintosh G4

Launched: 2000
Clock rate: 400 MHz
Data path: 32 bits
Memory: 64 MB
Cost: $1,599

Courtesy 0% Bernie Kohl on Wikipedia.
Used under CCO.
Power Macintosh G5

Launched: 2004
Clock rate: 1.8 GHz
Data path: 64 bits
Memory: 256 MB
Cost: $1,499

https://commons.wikimedia.org/wiki/File:Apple_Power_Macintosh_G5_Late_2005_02.jpg
https://flic.kr/p/nYWuFJ
https://www.flickr.com/photos/mwichary/2151368358/

Moore’s Law and the scaling of clock frequency
= printing press for the currency of performance.

© 2008-2018 by the MIT 6.172 Lecturers

Technology Scaling After 2004

1,000,000
100,000
Normalized
10,000 transistor count
1,000
o
" Clock speed (MHz)
100 o Yo . N
®e ""~
10 >
$
1 & ¢
0o &

1970 1975 1980

1985 1990 1995 2000 2005 2010 2015
Year

Processor data from Stanford’s CPU DB [DkMm12].

© 2008-2018 by the MIT 6.172 Lecturers

10

Power Density

Source: Patrick Gelsinger, /ntel/ Developer’s Forum, Intel Corporation, 2004.

The growth of power density, as seen in 2004, if
the scaling of clock frequency had continued its
trend of 25%-30% increase per year.

© Paul Gelsinger at Intel Corporation. All rights reserved. This content is excluded from our
© 2008-2018 by the MIT 6.172 Lecturers "' Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

www.intel.com
https://ocw.mit.edu/help/faq-fair-use/

Vendor Solution: Multicore

--r; 7R SRR
Queue Uncore

Intel Core i7 3960X
(Sandy Bridge E), 2011

il : Shared ; * 6 cores
+ 3.3 GHz
« 15-MB L3 cache

oo i - L3 Cache -

e To scale performance, processor manufacturers put
many processing cores on the microprocessor chip.

e Each generation of Moore’s Law potentially doubles
the number of cores.

2 © Intel. All rights reserved. This content is excluded from our Creative Commons license.
© 2008-2018 by the MIT 6.172 Lecturers For more information, see https://ocw.mit.edu/help/fag-fair-use/

www.intel.com
https://ocw.mit.edu/help/faq-fair-use/

Technology Scaling

1,000,000
100,000
Normalized
10,000 transistor count
1,000
Clock speed (MHZ)
100 . .—.’ o
% ',’t"
10 z’
s $ Processor cores
[T4 W r——
0o &
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Processor data from Stanford’s CPU DB [DkMm12].

© 2008-2018 by the MIT 6.172 Lecturers 13

Performance Is No Longer Free

y | R 2011 Intel
Pero B snared E2: co Skylake
oy | processor

Memory Controller

rocessor rocessor =
e pent L Texture SEEEEECEEEE Texture
Cores B | B -
Tha v Gy
fie !

NVIDIA

rrrrrrrr

e - L X - T ¥ SrTrmseTm B
VU R e e e e S “{.‘-‘_-- T 1
'

© 2008-2018 by the MIT 6.172 Lecturers

Moore’s Law continues to
InCcrease computer
performance.

But now that performance
looks like big multicore
processors with complex
cache hierarchies, wide
vector units, GPU’s,
FPCA’s, etc.

Generally, software must
be adapted to utilize this
hardware efficiently!

© Intel. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/fag-fair-use/

www.intel.com
https://ocw.mit.edu/help/faq-fair-use/

Software Bugs Mentioning “Performance”

Bug reports for Mozilla “Core” Commit messages for MySQL
1.40% 1.60%
1.20% 1.40%
1.00% 1.20%
(o)
0.80% 1.00%
0 600 0.80%
e 0.60%
0.40% 0.40%
0.20% | 0.20% -
0.00% = 0.00% =
1999 2004 2009 2014 1999 2004 2009 2014
Commit messages for OpenSSL Bug reports for the Eclipse IDE
3.00% 4.50%
4.00%
2.50%
>0% 3.50%
2.00% 3.00%
2.50%
[0)
1.50% 2.00%
1.00% 1.50%
1.00%
.50% 7
0.50% 0.50%
0.00% = 0.00% =
1999 2004 2009 2014 1999 2004 2009 2014

© 2008-2018 by the MIT 6.172 Lecturers 1

Software Developer Jobs

Mentioning “performance” Mentioning “optimization”
30.00% 7.00%
25.00% 6.00%
20.00% >.00%
4.00%
15.00%
3.00%
0,
10.00% 5 00%
5.00% 1 1.00% j
0.00% = 0.00% =
2001 2003 2005 2007 2009 2011 2013 2001 2006 2011
Mentioning “parallel” Mentioning “concurrency”
2.50% 0.70%
[0)
2.00% 0.60%
0.50%
1.50% 0.40%
1.00% 0.30%
0.20%
(o)]
0.50% 0.10% 1
0.00% = 0.00% =
2001 2006 2011 2001 2006 2011

Source: Monster.com

© 2008-2018 by the MIT 6.172 Lecturers 16

https://Monster.com

Performance Engineering Is Still Hard

A modern multicore HE
desktop processor contains

[| [

i o I oo B =
parallel-processing cores, T T
vector units, caches,
prefetchers, GPU’s, S E L
hyperthreading, dynamic 1V

.) CPU Core & CPU Core
frequency scaling, etc., etc. - -

e IJ KT ﬂl@!lllﬂl e

How can we write software R e 3
to utilize modern hardware ®@® GraphicsCore+

. . 0 g New Media Capabilities R
efficiently? ' T

2017 Intel 7th-generation

17 desktop processor
© Intel. All rights reserved. This content is excluded from our Creative Commons license.
© 2008-2018 by the MIT 6.172 Lecturers

For more information, see https://ocw.mit.edu/help/fag-fair-use/

https://ocw.mit.edu/help/faq-fair-use/
www.intel.com

" SPEED
LIMIT

OO

PER ORDER OF 6.172

CASE STUDY

© 2008-2018 by the MIT 6.172 Lecturers

Square-Matrix Multiplication

e N e N e N
Ci1 G2 - Gy dyjp dyjp -t dyy by by - by,
Co1 Cp = Con| | dA21 A2 *+ dpp . b,y by, - by,
CCh1 Gz o G Ldn1 dp2 0 dpp) \bnl I:)n2 I:)nn/

a " N\

Cij = Z Qi by
k = 1
_ J

Assume for simplicity that n = 2k,

© 2008-2018 by the MIT 6.172 Lecturers 19

AWS c4.8xlarge Machine Specs

Feature Specification
Microarchitecture Haswell (Intel Xeon E5-2666 v3)

Clock frequency 2.9 GHz

Processor chips 2
Processing cores 9 per processor chip
Hyperthreading 2 way

8 double-precision operations, including

Floating-point unit fused-multiply-add, per core per cycle

Cache-line size 64 B

L1-icache 32 KB private 8-way set associative
L1-dcache 32 KB private 8-way set associative
L2-cache 256 KB private 8-way set associative
L3-cache (LLC) 25 MB shared 20-way set associative
DRAM 60 GB

Peak = (2.9 X 109)><2 X 9 x 16 = 836 GFLOPS

© 2008-2018 by the MIT 6.172 Lecturers

import sys, random Running time

from time import *

= 21042 seconds
n = 4096 ~ 6 hours

A = [[random.random() Is this fast?

for row in xrange(n)]
for col in xrange(n)]
B = [[random.random()
for row in xrange(n)] Should we expect
for col in xrange(n)] more from our
C = [[@ for row in xrange(n)] machine7

for col in xrange(n)]

start = time()
for i in xrange(n):
for j in xrange(n):
for k in xrange(n):
C[i][J] += A[i][k] * B[k][]]
end = time()

print '%0.6f' % (end - start)

© 2008-2018 by the MIT 6.172 Lecturers 21

Version 1: Nested Loops in Python

import sys, random Running time
from time import * 2-| 042 SECOndS
n = 4096 ~ 6 hours

A = [[random.random() -
;2: ﬁgwri: i?ange(n)] s thIS faSt?
“for col in xrange(n)]
i Back-of-the-envelope, calculation .~

C=12n3 = 2(2m2)3 = 237 floating-point gpeféitions

Running time = 21042 seconds
;E;’jf‘ . Python gets 237/21042_,,%"'6/./2;; MFLOPS
Peak =~ 836 GFLOPS
Python gets =~ 0.00075% of peak

end |

| -

print '%0.6f' % (end - start)

4

© 2008-2018 by the MIT 6.172 Lecturers 2

for (int i=@; i<n; i++) {
for (int j=@; j<n; j++) {
for (int k=@; k<n; k++) {

}
}
4

© 2008-2018 by the MIT 6.172 Lecturers

Running time = 2,738 seconds
~ 46 minutes
... about 8.8x faster than Python.

for (int i=0; i<n; i++)—f

C[i][3] += A[i][k] * B[K][3];

fEr (2 =0 Rk NS TR

for (int k=0; k<n; k++) {

; C[1][3] += A[i][k] * B[k][J];
}

———

S

23

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = @; k < n; ++k) {
C[i1[3] += A[i][k] * B[k]I[3];

}
}

© 2008-2018 by the MIT 6.172 Lecturers

Using the Clang/LLVM 5.0

compiler

Running time = 1,156 seconds
~ 19 minutes,

or about 2x faster than Java and

about 18x faster than Python.

fFor @ity I%=,09; - X" n; 1) {
figr (NI 8" 7 < s s e G0 |
TR UITLalMs=S0 Sl =% e Flh =4
Gl 1] Ie= ALl L] N8 [fkffagil 5

24

Where We Stand So Far

Running| Relative| Absolute Percent
Version {Implementation time (s)| speedup Speedup GFLOPS| of peak

Python 21041.67 1.00 0.007 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.119 0.014

Why is Python so slow and C so fast?

e Python is interpreted.
o Cis compiled directly to machine code.

e Java is compiled to byte-code, which is then
interpreted and just-in-time (JIT) compiled
to machine code.

© 2008-2018 by the MIT 6.172 Lecturers %

Interpreters are versatile, but slow

e The interpreter reads, interprets, and performs each
program statement and updates the machine state.

o Interpreters can easily support high-level
programming features — such as dynamic code
alteration — at the cost of performance.

Read next
statement

Interpret
statement

Interpreter
loop

Perform
statement

Update
state

© 2008-2018 by the MIT 6.172 Lecturers %

 JIT compilers can recover some of the performance
lost by interpretation.

e When code is first executed, it is interpreted.

e The runtime system keeps track of how often the
various pieces of code are executed.

e Whenever some piece of code executes sufficiently
frequently, it gets compiled to machine code in real
time.

e Future executions of that code use the more-
efficient compiled version.

© 2008-2018 by the MIT 6.172 Lecturers 27

We can change the order of the loops in this program
without affecting its correctness.

for (int 1 = 0; 1 < n; ++i) {
o (1Nt Y =00 Ta" < “n5h-rhs) &l
for (int k = 0; k < n; ++k) {
CL][3] += A[1][k] * BL[k][J];

© 2008-2018 by the MIT 6.172 Lecturers 28

Loop Order

We can change the order of the loops in this program
without affecting its correctness.

for (int i = 0; i < n; ++i) {
for (int k = 0; k < n; ++k) {
FOR SERNte JEY=gOks SR =02t {
} C[i][j] += A[1i][k] * B[k][J];
}
}

Does the order of loops matter for performance?

© 2008-2018 by the MIT 6.172 Lecturers 29

Loop order Running
(outer to inner) time (s)
i, j, k 1155.77
i, K, j 177.68
i, i, k 1080.61
j, k, i 3056.63
K, i, j 179.21
K, j, i 3032.82

© 2008-2018 by the MIT 6.172 Lecturers

30

Loop order affects
running time by a
factor of 18!

What’s going on!?

Hardware Caches

Each processor reads and writes main memory
in contiguous blocks, called cache /ines.

» Previously accessed cache lines are stored in a
smaller memory, called a cache, that sits near the
processor.

o Cache hits — accesses to data in cache — are fast.
o Cache misses — accesses to data not in cache —

are slow.
memory
processor N cache
.
cache lines

© 2008-2018 by the MIT 6.172 Lecturers 3

Memory Layout of Matrices

In this matrix-multiplication code, matrices are
laid out in memory in row-major order.

Matrix

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Memory

What does this layout imply
about the performance of
different loop orders?

Row 1

Row 2 Row 3

© 2008-2018 by the MIT 6.172 Lecturers

32

Running time:

for (int k = @; k < n; ++k) 1155.77s
C[i][]j] += A[1i][k] * B[k][3];

In-memory layout | Excellent spatial locality l

C | [= | | | |
- L Good spatial locality _]
X
= L Poor spatial locality _]
EB (— | — | [—m — | | — | - -

4096 elements apart

© 2008-2018 by the MIT 6.172 Lecturers

Running time:
for (int j = @; j < n; ++3) 177.68s

C[1][3] += A[i][k] * B[k][]];

T In-memory layout
C | . | ,

X

© 2008-2018 by the MIT 6.172 Lecturers 3

Running time:
3056.63s

i ORI (N, = SO e S t P)
Clad 3] +=VA[1lEK]* BIKI[I3}s

In-memory layout

e —

(NNEEEEEE
@

© 2008-2018 by the MIT 6.172 Lecturers 3

We can measure the effect of different access patterns
using the Cachegrind cache simulator:

|$ valgrind --tool=cachegrind ./mm I

Loop order Running Last-level-cache
(outer to inner) time (s) miss rate
i, j, k 1155.77 7.7%
i, K,] 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
K, i, j 179.21 1.0%
k, j, i 3032.82 15.4%

© 2008-2018 by the MIT 6.172 Lecturers 36

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093

What other simple changes we can try?

© 2008-2018 by the MIT 6.172 Lecturers

https://21041.67

Compiler Optimization

Clang provides a collection of optimization switches.
You can specify a switch to the compiler to ask it to

optimize.

Opt. level Meaning Time (s)
-00 Do not optimize 177.54
-01 Optimize 66.24
-02 Optimize even more 54.63
-03 Optimize yet more 55.58

Clang also supports optimization levels for special
purposes, such as -0s, which aims to limit code size,
and -0g, for debugging purposes.

© 2008-2018 by the MIT 6.172 Lecturers 38

Version 5: Optimization Flags

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can
achieve 0.3% of the peak performance of the machine.

What’s causing the low performance?

© 2008-2018 by the MIT 6.172 Lecturers 39

https://21041.67

Multicore Parallelism

Intel Haswell E5:
9 cores per chip

The AWS test
machine has 2 of
these chips.

We’re running on just 1 of the 18 parallel-processing
cores on this system. Let’s use them all!

© Intel. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/fag-fair-use/

© 2008-2018 by the MIT 6.172 Lecturers 40

https://ocw.mit.edu/help/faq-fair-use/
www.intel.com

Parallel Loops

The cilk for loop allows all iterations of the loop to
execute in parallel.

cilk_for (int i = @; i < n; ++i)
o1t Yo =8e Rl "< “hs hrHls)
e Il CoR (At S0 . T

These loops can be
(easily) parallelized.

C[1][3] += A[1][k] * B[k][]];

Which parallel version works best?

© 2008-2018 by the MIT 6.172 Lecturers M

Experimenting with Parallel Loops

Parallel i loop

cilk _for (int i = @; i < n; ++i) Running time: 3.18s
o 1N YG=He Rl <R i)
ORI (G EEN] w=R O S eSS iy)
C (A=l +Sra 2 e Bk [il

Parallel j loop
for (int i = @; i < n: ++i) Running time: 531.71s

o i (1h Yk =0 -7l
b ML T ety Rule of Thumb

C[i][]] += A Parallelize outer
loops rather than

Parallel i and j inner loops.

cilk fer(int-1 = 05
0 Fie C 1TV YRV=0, Rl " hy ++k)
C 1 RO RN aTies S[Ri= =01 2N g SESEL)
Cliash N = RAl B RRCIN SBilidl [a5

ng time: 10.64s

© 2008-2018 by the MIT 6.172 Lecturers 42

Version 6: Parallel Loops

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Using parallel loops gets us almost 18x speedup on
18 cores! (Disclaimer: Not all code is so easy to
parallelize effectively.)

Why are we still getting just 5% of peak?

© 2008-2018 by the MIT 6.172 Lecturers 43

https://21041.67

Hardware Caches, Revisited

IDEA: Restructure the computation to reuse data in the
cache as much as possible.

« Cache misses are slow, and cache hits are fast.

- Try to make the most of the cache by reusing the
data that’s already there.

memory
processor i Cache
@ |
M/le(— B—|
cache lines

© 2008-2018 by the MIT 6.172 Lecturers a

Data Reuse: Loops

How many memory accesses must the looping code
perform to fully compute 1 row of C?

*« 4096 * 1 = 4096 writes to C,

* 4096 * 1 = 4096 reads from A, and

* 4096 * 4096 = 16,777,216 reads from B, which is
* 16,785,408 memory accesses total.

45

© 2008-2018 by the MIT 6.172 Lecturers

Data Reuse: Blocks

How about to compute a 64 x 64 block of C?
« 64 - 64 = 4096 writes to C,

* 64 - 4096 = 262,144 reads from A, and

*« 4096 - 64 = 262,144 reads from B, or

- 528,384 memory accesses total.

- :-x

© 2008-2018 by the MIT 6.172 Lecturers 40

Tiled Matrix Multiplication

¢ilk for int-ih =485 dih" n;' rih =, s% : 4\\
& Tl " O (G lin ="05 1 i) s il Th =S Tuning para_meter
RO IS BER Il 2% s K =S) How do we find the

ToRE (It M= st 1IN <lSH -+ el right value of s?
for (int k1l = @; kl < s; ++kl) Experiment!
O G Rt JEE 2= O i< Sp aT i) P '

C[ih+il][jh+j1] += A[ih+i1l][kh+kI T BTRATRITITIAFIIT; W

<S>
,r A
S
v 4 6.74
8 2.76
A 16 2.49
32 1.74
64 2.33
v 128 2.13
< N >

© 2008-2018 by the MIT 6.172 Lecturers 4

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

/ + tiling 1.79 1.70 11,772 76.782 9.184
Cache references L1-d cache Last-level cache

Implementation (millions) misses (millions) misses (millions)
Parallel loops 104,090 17,220 8,600
+ tiling 64,690 11,777 416

The tiled implementation performs about 62% fewer
cache references and incurs 68% fewer cache misses.

© 2008-2018 by the MIT 6.172 Lecturers 48

https://21041.67

Multicore Cache Hierarchy

© 2008-2018 by the MIT 6.172 Lecturers

49

DRAM| DRAM| DRAM
W
Memory Net-
Controller work :I
LLC (L3)
Latency
L2 L2 L2 (ns)
Main 60 GB 50
L1 L1 L1 L1 L1 L1 LLC 25 MB 20 19
datal | inst| |datal | inst datal | inst
e b] L2 256 KB 8 4
L1-d 32KB 8 2
L1-i 32KB 8 2
Processor chip 64-byte cache lines

< N
<€ S >
<t>
A A A
y
S
\4
e Two tuning
parameters, s and t.
e Multidimensional
N tuning optimization
cannot be done with
binary search.

© 2008-2018 by the MIT 6.172 Lecturers

50

Tiling for a Two-Level Cache

<€ N

¢ilk for (int-ih =#85"ih"<, n;' ih#+=, s%
@i Tl Tor-Y Gmniss jlin /= ""0 Y s i~ TheF=»"sy
EORM MBI t=1 'OE Il =% Ty Mk FrRE=4s %)
fFoha (IRt siine= 05 1Ml <uiSaimer= f)
HOEGLIEN M A=A ™ g hs): aI-r= {t))
for (int km = ©; km < s; km += t)
EOEe"(1 k= d8e= RIS 1S SREE. oY)
for (int k1l = @; kl < t; ++kl)
N foRint: 15 = g %< £ T
C[ih+im+il][jh+jm+jl] +=

A[ih+im+il][kh+km+kl] * B[kh+km+kl][jh+jm+3jl];

4

© 2008-2018 by the MIT 6.172 Lecturers >1

Recursive Matrix Multiplication

IDEA: Tile for every power of 2 simultaneously.

-
COO

Cio

.

~
Con

CH

7

-
AOO

Ao

|

i AOOBOO

_ A10Boo

N
Ao

AH

J

AOOBOl)

A1oBor

" AoiBio

AHB]O

.

8 multiplications of n/2 X n/2 matrices.
1 addition of n X n matrices.

© 2008-2018 by the MIT 6.172 Lecturers

52

A01BH\

A11By1]

Recursive Parallel Matrix Multiply

int n)
{// C+=A *B
assert((n & (-n)) == n);

cilk sync;
cilk gpawn mm_dac(X(C,0,0), n
/ 4 mm_dac(X(C,0,1), n
cilk_sp mm_dac(X(C,1,0), n
dac(X(C,1,1), n

cilk _sync;

void mm_dac(double *restrict C, int
double *restrict A, int
double *restrict B, int

Sk ~(N<i="s 1) {
} else
#define ,r,c) (M + (r*(n_ ## M) +

cilk_spawn|mm_dac(X(C,0,0), n_C,
cilk _spawn mm_dac(X(C,0,1), n_C,
cilk _spawn mm_dac(X(C,1,0), n_C,

mmed@ci(OXCE MK , - MG

" The child function call
is spawned, meaning it
may execute in parallel
with the parent caller.

c)*(n

X (ARIBL, 0 Z2E, Ane DA BRIGISOR S B o liE2 5
X(A,0,0), n A, X(B,0,1), n B, n/2);
KICA AL, G "N WA, oXHIB", v, DR AT Bl nyi2l";
XICALAnaNE nSASFX(BLIONMIEE n- B Sgiv/ 250"
X(AJe)l)) n_A) X(B)lJe)J n_B) n/Z);
X(AJe)l)) n_AJ X(B)lJl)J n_B) n/Z);

:V Control may not pass
this point until all
spawned children have

© 2008-2018 by the MIT 6.172 Lecturers

returned.

53

Recursive Parallel Matrix Multiply

void mm_dac(double *restrict C, int n_C,
double *restrict A, int n?ﬁvf
double *restrict B, int n

SR ‘ The base case is too
) o small. We must coarsen

assert((n & (-n)) == n);)
if[(n -)i¢——=="___ | the recursion to overcome
S Em =" RVAY *. BBE .
TR function-call overheads.
#define X(M,r,c) (M + (r*(n_ ## M) +
cilk _spawn mm_dac(X(C,0,0), n_C,

n_
cilk_spawn mm_dac(X(C,0,1), n_C, X(A 0 9), n X(B,@,l), naB5 fmye2’).,
cilk spawn,"mmedac (X (Cs150), neC, X(A,1,0);"n A, X(B,0,0),:nh_Bs. n/2);

mmed@c/OCCE M) , - MG XA In Rl n_A, X(BJoNoTs n- B =aii/ 25

cilk_sync;

cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n A X (BRSO BaLy 2)5

cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0, }), R = ==
o X0

cilk_spawn mm_dac(X(C,1,0), n
X(A,1, Running time: 93.93s

:dac(X(C TN n:
cilk_sync;

} ... about 50x slower
than the last version!

© 2008-2018 by the MIT 6.172 Lecturers >4

Coarsening The Recursion

void mm_dac(double *restrict C, int 4
double *restrict A, int § /, .
double *restrict B, int 2 JUSt one tun|ng
o el parameter, for the
assert((n & (-n)) == n); size of the base case.

if [(n <= THRESHOLD)
mm_base(C, n.C, A, n.A, B, n_B, n);

} else {
#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))

cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);

cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);

e1¥k ~spawn " mmedae CX(Cs T30, NeC ,« XTA L 8)3" n »A, - X(B, 0,805,580 "B n/2");
mnd@C/(XCC MAHS) , - M lGe" XCAL Bni0ty, nWA S¥X(BUOMIRES. n. B, gn'/20%

cilk_sync;

cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);

c itk ™ spawnimmEdac (X(C,0,d) L NG, - XGAT 019 5 T nNARXGR 1 195 Y BTSN /28 ;

cilk spawn”mm-dac(X(C,1,0), n.C, X(A,1,1)," n. A, X(B,1,0), 'n.B, n/2);
mnadac (OGEE S)F, - NG XEAS T 1L w0 "A 5 XI((BWIS) rn L B 2 0/ 28%

cilk_sync;

© 2008-2018 by the MIT 6.172 Lecturers %

void mm_base(double *restrict C, int n C,
double *restrict A, int n_A,
double *restrict B, int n_B,
it S

{W/ /g€ =AY R E

for (int i = 0; i < n; ++1i)
for (int k = @; k < n; ++k)
f ot (Mt TR - O.;) h<s e et)
C[i*n_C+j] += A[i*n_A+k] * B[k*n_B+j];

© 2008-2018 by the MIT 6.172 Lecturers

void mm_dac(double *restrict C, int n C,

double *restrict A, int n_A,
double *restrict B, int n_B,
I my)

G = i B
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n. C, A, n_A, B, n_ B, n);

} else {
#define X(M,r,c) (M + (r*(n_ ## M) +

c)*(n/2))

cilk_spawn mm_dac(X(C,0,0), n C, X(A,0,0), n_A, X(B,0,0), n B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, Base- Running
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, : :
mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, hoesi=teiras time (s)
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n C, X(A,0,1), n_A, 4 3.00
cilk_spawn mm_dac(X(C,0,1), n C, X(A,0,1), n A, 8 1.34
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A,
mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, 16 1.34
cilk_sync; 32 1.30
64 1.95
128 2.08

© 2008-2018 by the MIT 6.172 Lecturers

57

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

/ + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646
Cache references L1-d cache Last-level cache

Implementation (millions) misses (millions) misses (millions)
Parallel loops 104,090 17,220 8,600
+ tiling 64,690 11,777 416
Parallel divide-and-conquer 58,230 9,407 64

© 2008-2018 by the MIT 6.172 Lecturers %8

https://21041.67

Vector Hardware

Modern microprocessors incorporate vector hardware
to process data in single-instruction stream, multiple-
data stream (SIMD) fashion.

]
Memory a/ Parallel vector lanes operate
synchronously on the words

$ in a vector register.
V
T o Vector Load
O ¢
@ S t
go) q:) 4 Lane 1 4 Lane 2 Lane 3
S = Each vector register
- U A A holds multiple
U wn
S words of data.
- O
- C \ A
é’ leo] Word 1 Word 2 Word 3

Vector Registers

© 2008-2018 by the MIT 6.172 Lecturers 59

Compiler Vectorization

Clang/LLVM uses vector instructions automatically
when compiling at optimization level -02 or higher.

Clang/LLVM can be induced to produce a vectorization
report as follows:

$ clang -03 -std=c99 mm.c -o mm -Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2,
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j = 0; j < n; ++j) {

Many machines don’t support the newest set of vector
instructions, however, so the compiler uses vector
instructions conservatively by default.

© 2008-2018 by the MIT 6.172 Lecturers 60

Programmers can direct the compiler to use modern
vector instructions using compiler flags such as the

following:

-mavx: Use Intel AVX vector instructions.

-mavx2: Use Intel AVX2 vector instructions.

-mfma: Use fused multiply-add vector instructions.
-march=<string>: Use whatever instructions are
available on the specified architecture.
-march=native: Use whatever instructions are
available on the architecture of the machine doing
compilation.

Due to restrictions on floating-point arithmetic,

additional flags, such as -ffast-math, might be
needed for these vectorization flags to have an effect.

© 2008-2018 by the MIT 6.172 Lecturers

61

Version 9: Compiler Vectorization

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 + tiling 1.79 1.70 11,772 76.782 9.184
8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646
9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Using the flags -march=native -ffast-math nearly
doubles the program’s performance!

Can we be smarter than the compiler?

© 2008-2018 by the MIT 6.172 Lecturers 62

https://21041.67

AVX Intrinsic Instructions

Intel provides C-style functions, called /ntrinsic
instructions, that provide direct access to hardware vector

operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

(intel Intrinsics Guide

Technologies
MMX
SSE
SSE2
SSE3

SSE4.1

i
fi
§ sssE3
i
il

| P

AVX-512
I KNC
§ svwm

Other

Categories
Application-Targeted

The Intel Intrinsics Guide is an interactive reference tool for Intel intrinsic instructions, which are C*
style functions that provide access to many Intel instructions - including Intel® SSE, AVX, AVX-
512, and more - without the need to write assembly code.

?
B __m256i _mm256_abs_epilé (__m256i a)
B __m256i _mm256_abs_epi32 (__m256i a)
l__m256i _mm256_abs_epi8 (__m256i a)
H__m256i _mm256_add_epilé (__m256i a, __m256i b)
__m256i _mm256_add_epi32 (__m256i a, __m256i b)
B __m256i _mm256_add_epié4 (__m256i a, __m256i b)
N __m256i _mm256_add_epi8 (__m256i a, __m256i b)
l__m256d _mm256_add_pd (__m256éd a, __m256d b)
__m256 _mm256_add_ps (__m256 a, __m256 b)
__m256i _mm256_adds_epilé (__m256i a, __m256i b)
__m256i _mm256_adds_epi8 (__m256i a, __m256i b)
!__m2561 _mm256_adds_epulé (__m256i a, __m256i b)

" "o Intel. All rights reserved. This content is excluded from our Creative Commons

© 2008-2018 by the MIT 6.172 Lecturers 63 license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://ocw.mit.edu/help/faq-fair-use/
https://software.intel.com/sites/landingpage/IntrinsicsGuide

We can apply several more insights and performance-
engineering tricks to make this code run faster,
including:

* Preprocessing

« Matrix transposition

- Data alignment

- Memory-management optimizations

- A clever algorithm for the base case that uses AVX
intrinsic instructions explicitly

© 2008-2018 by the MIT 6.172 Lecturers 64

Think, - code,

run, run, run...

...to test and measure many
different implementations

© 2008-2018 by the MIT 6.172 Lecturers 65

Running Relative Absolute Percent

Version Implementation time (s) speedup Speedup GFLOPS of peak
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
/ + tiling 1.79 1.70 11,772 76.782 9.184
8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646
9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486
10 + AVXintrinsics 0.39 1.76 53,292 352.408 41.677

© 2008-2018 by the MIT 6.172 Lecturers

Version 11: Final Reckoning

Running Relative Absolute

Version Implementation time (s) speedup Speedup GFLOPS
1 Python 21041.67 1.00 1 0.006 0.001
2 Java 2387.32 8.81 9 0.058 0.007
3 C 1155.77 2.07 18 0.118 0.014
4 + interchange loops 177.68 6.50 118 0.774 0.093
5 + optimization flags 54.63 3.25 385 2.516 0.301
6 Parallel loops 3.04 17.97 6,921 45.211 5.408
7 + tiling 1.79 1.70 11,772 76.782 9.184
8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646
9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486
10 + AVXintrinsics 0.39 1.76 53,292 352.408 41.677
11 Intel MKL 0.41 0.97 51,497 335.217 40.098

Version 10 is competitive with Intel’s professionally
engineered Math Kernel Library!

© 2008-2018 by the MIT 6.172 Lecturers o7

Performance Engineering

Gas economy
MPG

Courtesy of stevepj2009 on Flickr. Used under CC-BY.

* You won’t generally see the magnitude
of performance improvement we
obtained for matrix multiplication.

e Butin 6.172, you will learn how to

print the currency of performance all
by yourself.

Courtesy of pngimg.

Used under CC-BY-NC.
© 2008-2018 by the MIT 6.172 Lecturers 68

http://pngimg.com/download/11296
https://www.flickr.com/photos/stevepj2009/3333523138

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

69

ocw.mit.edu
ocw.mit.edu/terms

