
 
 

     

               
      

 

  

  

  

  

  

  

 
 

 

 

 

 

 

 

 

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 6.172 
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 11 

Project 3: Serial Dynamic Memory Allocation 
[Note: This assignment makes use of AWS and/or Git features which may not be available to OCW 
users.] 

In this project you will implement a fast and space-efficient, single-core memory allocator that follows 
the semantics of libc’s memory allocator functions. 

1 Deliverables 

2 Team formation 

2 Team contract 

2 Beta submission 

2 Beta write-up 

2 Final submission 

2 Final write-up 

Remember that progress reports are due weekly at 7:00 p.m. every Thursday. 

2 Getting started 

Snailspeed Ltd. makes liberal use of dynamic storage allocation through the use of malloc(). You 
would like to speed up as much of Snailspeed’s code as possible, but it is not feasible for you 
to rewrite their entire codebase. In an effort to maximize the value of your work, you decide to 
write an optimized storage allocator which may be used to improve the performance of a large 
number of Snailspeed applications. 

You have generated a number of memory allocation traces from some Snailspeed applications; 
since these traces are representative of the sort of work that the dynamic storage allocator will be 
asked to do, you should make sure that your allocator performs well on these traces. Snailspeed 
applications are often run in memory-scarce environments, and so a good solution should be 
fast and have as little memory overhead as possible. Snailspeed has serial programs which use 
dynamic memory allocation. 

Your goal is to build a fast, space-efficient, general purpose, single-core memory allocator. 
You’ll also build a test suite to ensure that your allocator is functionally correct. You should use 
the techniques discussed in class to balance free-list maintenance time with memory overhead. 
You are also encouraged to try out autotuning, which allows you to programmatically find 
optimal values for parameters that control the allocator’s execution. 



  

      

  

                 
                  

                
      

   

             
                

               
                  

          

 

2 Handout 11 — Project 3: Serial Dynamic Memory Allocation 

2.1 Team formation 

You should begin by finding a teammate. 

2.2 Team contract 

You and your teammate must agree to a team contract. A team contract is an agreement among 
teammates about how your team will operate — a set of conventions that you plan to abide by. 
The requirements for the team contract are the same as before. For guidance in writing your 
team contract, refer to Project 1’s description. 

2.3 Getting the code 

Remember that we expect groups to be practicing pair programming, where partners are 
working together with one person at the keyboard and the other person serves as watchful eyes. 
This style of programming will lead to bugs being caught earlier, and both programmers always 
having familiarity with the code. You will find that it’ll be difficult to split this project into two 
individually-completed chunks, so don’t plan to divide work in this manner. 



  
 

  

   

 
 

 
 

 

   

 

 

     

 

 

 

 

 
 

 

Handout 11 — Project 3: Serial Dynamic Memory Allocation 3 

3 Heap Memory Allocator Interface 

Your dynamic storage allocator will consist of the following four functions, which (among other 
functions) are declared in allocator_interface.h and defined in allocator.c. The allocator.c 
file we have given you implements the simplest functionally correct malloc() package that we 
could think of. Using this as a starting place, modify these functions (and possibly define other 
private static functions), so that they obey the proper semantics. 

• int my_init(void); 

Before calling my_malloc(), my_realloc(), or my_free(), the application program (i.e., the 
trace-driven driver program that you will use to evaluate your implementation) calls my_init(). 
You may use this function to perform any necessary initialization, such as allocating the 
initial heap area. The return value should be −1 if there was a problem in performing the 
initialization and 0 if everything went smoothly. 

• void* my_malloc(size_t size); 

This call must return a pointer to a contiguous block of newly allocated memory which 
is at least size bytes long. This entire block must lie within the heap region and must 
not overlap any other currently allocated chunk. The pointers returned by my_malloc() 
must always be aligned to 8-byte boundaries; you’ll notice that the libc implementation of 
malloc does the same. If the requested size is zero or an error occurs and the requested 
block cannot be allocated, a NULL pointer must be returned. 

• void my_free(void* ptr); 

This call notifies your storage allocator that a currently allocated block of memory should 
be deallocated. The argument must be a pointer previously returned by my_malloc() or 
my_realloc(), and not previously freed. You are not required to detect or handle either of 
these error cases. However, you should handle freeing a NULL pointer — it is defined to 
have no effect. 

• void* my_realloc(void* ptr, size_t size); 

This call returns a pointer to an allocated region, similarly to how my_malloc() behaves. 
There are two special cases you should be aware of. 

– If ptr is NULL, the call is equivalent to my_malloc(size);. 

– If size is equal to zero, the call is equivalent to my_free(ptr);. 

Otherwise, ptr must meet the same constraints as the argument to my_free(); it must 
point to a previously allocated block and it must have been previously returned by either 
my_malloc() or my_realloc(). You do not need to defend against frees to invalid pointers. 
The return value of my_realloc() must meet all of the same constraints as the return value 
of my_malloc(); namely, it be 8-byte aligned and must point to a block of memory of at 
least size() bytes. 



 

 

   

  

 
 

Handout 11 — Project 3: Serial Dynamic Memory Allocation 4 

There is one additional constraint on the behavior of my_realloc(). Any data in the old 
block must be copied over to the new block. If the new block is smaller, the old values are 
truncated; if the new block is larger, the value of each of the bytes at the end of the block is 
undefined. 

A naive implementation of my_realloc() might consist of nothing more than a call to 
my_malloc(), a memory copy, and a call to my_free(). This is, in fact, how the reference 
implementation works; leaving this solution in place is probably a good way to get started. 
Once you’ve made progress on my_malloc() and my_free(), you will want to consider ways 
of improving the performance of my_realloc(). 

All of this behavior matches the semantics of the corresponding libc routines. Type man malloc 
at the shell to see additional documentation, if you’re curious. 

4 Checking the Consistency of the Heap 

Dynamic memory allocators are notoriously tricky to program correctly and efficiently. One 
reason why they can be difficult to program correctly is because the code involves a lot of untyped 
pointer manipulation. Corruption introduced by mishandling pointers might not show up until 
several operations later, making it extremely difficult to diagnose the root cause for a crash or 
incorrect output. For this reason, among others, you will find it very helpful to write a heap 
checker that scans the heap and checks it for consistency. Naturally, exactly what the heap 
checker can or should check for will depend on how you choose to implement your storage 
allocator. However, here are some examples of questions that the heap checker might ask. 

• Is every block in the free list marked as free? 

• Are there any contiguous free blocks that could be coalesced? 

• Is every free block actually in the free list? 

• Do the pointers in the free list point to valid free blocks? 

• Do any allocated blocks overlap? 

• Do the pointers in a heap block point to valid heap addresses? 

Generally, as you design the data structures you will use to solve this problem, you should 
make a note of any relevant invariants. Your heap checker will consist of the function int check(void) 
in allocator.c. It should return a zero if and only if your heap is consistent and return −1 oth-
erwise. You are not limited to the listed suggestions nor are you required to check all of them. 
You are encouraged to print out error messages when check() fails. 

You can tell the driver to check the heap after every operation by passing the -c option to the 
driver, and looking at the “checked” column. You should also sprinkle heap check assertions in 
your code when you feel the heap might go from uncorrupted to corrupted (e.g. before and after 
major operations on your internal data structures). Remember that assertions are only checked in 



 
 

   

  

  

  

  

  

  

 

 
 

  

5 Handout 11 — Project 3: Serial Dynamic Memory Allocation 

debug mode, and are not executed in release mode. The heap checker is like your own internal 
suite of unit tests. We will not run it against anyone else’s code, and we will not look at it during 
cross testing or performance testing. 

Along the same lines, you may find it helpful to write some debugging functions that print 
your key data structures in some easy-to-read format on your screen. 

5 Support Routines 

The code in memlib.c simulates the memory system for your dynamic memory allocator. You 
can invoke any of the the following functions in memlib.c (but you may not modify any of their 
implementations): 

• void* mem_sbrk(int incr); 

Expands the heap by incr bytes, where incr is a positive non-zero integer and returns a 
generic pointer to the first byte of the newly allocated heap area. The semantics are identical 
to the Unix sbrk() function, except that mem_sbrk() accepts only a positive non-zero integer 
argument. 

• void* mem_heap_lo(void); 

Returns a generic pointer to the first byte in the heap. 

• void* mem_heap_hi(void); 

Returns a generic pointer to the last byte in the heap. 

• size_t mem_heapsize(void); 

Returns the current size of the heap in bytes. 

• size_t mem_pagesize(void); 

Returns the system page size in bytes (4 KB on Linux systems). 

In the code you write, you may NOT invoke any of the functions in memlib.c that are not 
listed above. Additionally, you may NOT invoke any of the wrappers to these functions in 
my_allocator_wrappers.c. These functions are for use by the TA’s who are grading your submis-
sions. 

6 Writing the External Validator 

For the cross testing component of this project, you will be writing a blackbox (external) valida-
tor that can test any malloc() implementation. Your validator will be used to test your peers’ 
implementations. Look in validator.h for the skeleton of our validator, which lists all of the 
invariants we want you to check. They are reproduced here for reference. 

• For the given traces, neither my_malloc() nor my_realloc() should return NULL. 



 

 
 

  

 
 

 

  

 

 

 

 

 
 

 

6 Handout 11 — Project 3: Serial Dynamic Memory Allocation 

• Allocated ranges returned by the allocator must be aligned to 8 bytes. 

• Allocated ranges returned by the allocator must be within the heap. 

• Allocated ranges returned by the allocator must not overlap. 

• When calling my_realloc() on an existing allocation, the original data must be intact (up 
to the reallocated size). 

We’ve provided a linked list representation for the ranges, but you must provide the add() 
and remove() operations for this data structure. 

7 The Trace-based Driver 

The driver program mdriver.c tests your allocator.c package for correctness, space utiliza-
tion, and throughput. The driver program is controlled by a trace file. Each trace file con-
tains a sequence of allocate, reallocate, and free commands that instruct the driver to call your 
my_malloc(), my_realloc(), and my_free() routines in some sequence. It also contains write 
commands that instruct the driver to read and write the allocated memory. Run mdriver locally 
on your VM as opposed to awsrun. The driver mdriver accepts the following command line 
arguments: 

• -t <tracedir>: Look for the default trace files in directory <tracedir> instead of the default 
directory (./traces). 

• -f <tracefile>: Use one particular trace file for testing instead of the default set of trace 
files. 

• -h: Print a summary of the command line arguments. 

• -v: Verbose output. Print a performance breakdown for each tracefile in a compact table. 

• -V: More verbose output. Prints additional diagnostic information as each trace file is pro-
cessed. Useful during debugging for determining which trace file is causing your my_malloc 
package to fail. 

• -c: Check the heap after every operation using your check() function. 

The simple implementation given to you will run out of memory on the realloc() trace and 
throw an error since it does not utilize freed space appropriately. Your implementation will be 
expected to pass all of the trace files in the traces directory. We will test your implementation 
with traces other than those provided in the traces directory. 

More information on the format of the trace files can be found in the README included at the 
top level of the Project 3 code repository. 
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8 Autotuning 

Optimization and implementation strategies in a program can affect performance considerably. 
A tuning framework searches through different strategies and finds the best performing imple-
mentations. If you’d like, you can use the OpenTuner autotuning framework to tune parameters 
of your allocator’s execution. This is not required for you to receive full credit. 

To tune your program, you first need to express the optimizations in your program as param-
eters and define a search space of possible values. The job of the autotuner is to automatically 
traverse the space, searching for the most effective combination of parameters. OpenTuner is a 
open source framework developed at MIT which we recommend for this project. To run Open-
Tuner, go to the project directory and follow the steps in the README file. Also revisit Homework 
6 for some instructions on running OpenTuner. 

Be careful: Autotuners are designed to find the most optimal configuration for whatever test 
cases you run them on, sometimes in ways that a human coder would never consider. If your 
tests are not general enough, you can overfit your allocator to the autotuning inputs. This may 
cause your code to run slower on the somewhat-different test suite that will actually be used for 
grading. 

More information about OpenTuner can be found in the conference paper, (“OpenTuner: An 
Extensible Framework for Program Autotuning”), and in the official online tutorial. 

9 Real Program Performance Testing 

In addition to the traces, we may also to test your allocators on real programs to determine 
the performance on realistic workloads. We have provided a simple performance test for your 
allocator in allocator_test.c, which can be run by executing the file allocator_test. For the 
beta, we will not be grading your performance against these additional programs; however, we 
do recommend you play around with this to get a feel for the performance of your allocator since 
we may test the your allocator against other real workloads for the final project submission. 

10 Rules and Reminders 

• You should not change any of the sources in the distribution except for the allocator.c, 
validator.h and opentuner_params.py files. You are free to add new files and update the 
Makefile appropriately if you wish. All of the other files will be overwritten with fresh 
copies during cross testing. 

• You should not invoke any memory-management related library calls or system calls. Do 
not use malloc(), calloc(), free(), realloc(), sbrk(), brk() or any variants of these calls 
in your code. 

• You should not use any parallelization for this project. This project is meant to be single-
core only. 

http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://opentuner.org/tutorial/gettingstarted/
https://opentuner_params.py
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• The total size of all defined global and static scalar variables and compound data structures 
must not exceed 512 bytes. 

• All data structures that allocate memory on heap MUST use our allocator heap interface. 

• All heap memory space used by your data structures will be counted under space utiliza-
tion. 

11 Evaluation 

Please remember to add all new files to your repository explicitly before committing and 
pushing your final changes. Your grade will be based on all of the following: 

• Performance (of correct code): Two performance metrics will be used to evaluate your solution. 
This is a little bit different from what we’ve done in previous projects. 

– Space utilization: The peak ratio between the aggregate amount of currently allocated 
memory (M) (i.e., allocated via my_malloc() or my_realloc() and not yet freed via 
my_free()) and the size of the heap (H) used by your allocator. The optimal ratio is, of 
course, 1. You should find good policies to minimize fragmentation in order to make 
this ratio as high as possible. The space utilization U would be calculated as 

U = max(M,40KB)/max(H,40KB) 

– Throughput: The average number of operations completed per second. 

The driver program summarizes the performance of your allocator by computing a perfor-
mance index, P, which is a weighted geometric mean of the space utilization and through-
put: 

P = exp (w logU + (1 − w) log (min(1, T/Tlibc))) 

where U is your space utilization, T is your throughput, and Tlibc is the estimated through-
put of libc’s malloc() on your system on the default traces. 

Since both memory and CPU cycles are expensive system resources, we adopt this formula 
to encourage balanced optimization of both memory utilization and throughput. Ideally, 
the performance index will reach P = exp (w log1 + (1 − w) log1) = 1 or 100%. Specifically, 
we have set the value of w to 0.5 so performance in terms of memory utilization and 
throughput are equally important. To receive a good score, you must therefore perform 
well in both categories. 

You will receive credit for each trace that your allocator successfully handles, as evaluated 
by our validator. We will test your implementation with traces other than those provided 
to you with the code. 

As mentioned previously, we may also test the performance (both throughput and utiliza-
tion) of your allocator against other real programs. Note that we will not be doing this 
for the beta submission. We have provided a simple allocator test that uses your allocator, 
which you can modify to test against other programs. 



             
               

              
              

               

               
      

           
             

             
 

            
             
       

               
              

              
           

                 
               

            
  

            
               

            
 

              
              

             
            

      
              

              
              

             

   
  

 
 

 

9 Handout 11 — Project 3: Serial Dynamic Memory Allocation 

• Progress reports: You must individually submit a personal progress report every Thursday 
that briefly describes the work you performed during the past week. The reports should be 
short: typically, a paragraph in length, describing what project work you engaged in and 
about how much time you spent on the various activities. Additionally, if necessary, describe 
any issues that may have arisen, such as with teammates — or rather, especially with 
teammates. 
Along with your paragraph description, include a summary of the daily number of lines of 
code you committed using the following script: 

$ cd <your/projects/base/directory> 
$ loc_summary 

• Addressing MITPOSSE comments: The MITPOSSE will give you feedback on your code 
quality. We expect you to respond thoughtfully to their comments in your final submission. 
We will review the MITPOSSE comments and your write-up to ensure that you are 
addressing them. 

• Test coverage: Your my_malloc() validator should catch all violations of the invariants we 
listed. We will run it on every other team’s my_malloc() implementation and compare your 
results with our own to determine your grade. 

• Beta and final group write-up: You are required to submit (on LMOD) a group write-up for 
both the beta and the final submissions. Important: Please also push your write-up to your 
git repository as a .txt file. This requirement gives your MITPOSSE mentor access to the 
write-ups and lets them read a description of the optimizations you’ve made. 
You will notice that we have not provided you with a list of questions to guide your ex-
ploration of this problem. Now that you have a couple of projects under your belts, we 
will expect you to be able to produce well-documented code and accompanying design 
materials without prompting. 
To supplement the documentation present in your code, you should submit some addi-
tional materials; they should be as concise as possible while still doing an effective job of 
explaining how your allocator works. Diagrams may be useful (and you should probably 
include some)! 
Your written materials should describe the data structures you have chosen and how each of 
your calls manipulates those data structures to accomplish its goals. While a lot of this 
material will probably overlap the comments present in your code, your write-up should be 
sufficiently detailed as a stand-alone document that we can completely understand what you 
are doing without looking at your code. 
As always, be sure to include a discussion of any possibilities that you examined and 
discarded. If you were forced to make trade-offs, be sure to discuss the possible advantages 
and disadvantages of each choice, and explain why you made the decision that you did. 
Explain the memory allocation strategies you used and what parameters you used for the 



            
              

             
           

  

    
 

 

10 Handout 11 — Project 3: Serial Dynamic Memory Allocation 

autotuning section. You should also report your program’s performance before and after 
tuning and report the best parameter configuration found by OpenTuner. 

• Final individual write-up: You are required to submit an individual write-up where you 
state what work you did, what work your partner did and how you worked together. 
Understand that we expect both students to be very familiar with the code submitted. 
This will show in your write-up and how you describe the project. 

We will grade your project submission based on the following point distribution: 

Beta Final 
Performance (of correct code) 
Team Contract 
Addressing MITPOSSE comments 
Test Coverage 
Write-up 

27% 
3% 

12% 
3% 

40% 

10% 

5% 
Total 45% 55% 

You will receive zero points if you break any of the rules or your code is buggy and crashes the 
driver. 

12 Hints and Tips 

• Spend plenty of time writing your internal consistency checker and other debugging tools. 
This will save you time in the long run. 

• Use the mdriver -f option. During initial development, using tiny trace files will simplify 
debugging and testing. We have included two such trace files. 

• Use the mdriver -v and -V options. The -v option will give you a detailed summary for 
each trace file. The -V will also indicate when each trace file is read, which will help you 
isolate errors. 

• Use a debugger, such as gdb. A debugger will help you isolate and identify out-of-bounds 
memory references. 

• Use assertions. When debugging a failure or a crash, sprinkle assertions in your code 
before and around the crash and rebuild it in DEBUG mode. When a program crashes due 
to an assertion failure, it prints out the failed condition and the line number of the failed 
assertion, which is more helpful than “Segmentation Fault”. 

• You may want to explore encapsulating your pointer arithmetic in static inline functions. 
Pointer arithmetic in memory managers is confusing and error-prone because of all of the 
casting which is necessary. You can reduce this complexity significantly by writing helper 
functions (or macros if appropriate) for your pointer operations. 



 
 

 
  

  

 

11 Handout 11 — Project 3: Serial Dynamic Memory Allocation 

• Do your implementation in stages. We recommend that you start by getting your my_malloc() 
and my_free() routines working correctly and efficiently and test it on the traces. The 
realloc() trace should be tested after the implementation of my_realloc(). Remember that 
the reference implementation of my_realloc() is built on top of my_malloc() and my_free(). 

• Use a profiler like perf or gprof to identify hot spots. Remember all of the techniques we’ve 
discussed so far! 

• Start very early! It is possible to write an efficient malloc package with a few pages of code. 
However, we can guarantee that it will be some of the most difficult and sophisticated code 
you have written so far, and probably also the most difficult to debug. If you wait until 
the last minute, you may find that you do not have enough time to produce a worthwhile 
product. Good luck! 
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