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Memory Models

Initially, a = b = 0.

Processor O Processor 1

mov 1, a ;Store mov 1, b ;Store
mov b, %ebx ;Load mov a, %eax ,Load

4

4

Q. Is it possible that Processor 0’s %ebx and
Processor 1’s %eax both contain the value O after
the processors have both executed their code?

A. It depends on the : how memory
operations behave in the parallel computer
system.
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“ITlhe result of any execution is the same as
if the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor
appear in this sequence in the order specified
by its program.” — Leslie Lamport [1979]

» The sequence of instructions as defined by a processor’s
program are with the corresponding sequences
defined by the other processors’ programs to produce a global

of all instructions.

o A LOAD instruction receives the value stored to that address by
the most recent STORE instruction that precedes the LOAD,
according to the linear order.

e The hardware can do whatever it wants, but for the execution
to be sequentially consistent, it must as if LOAD’s and
STORE’s obey some global linear order.
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Example

Initially, a = b = 0.
Processor O Processor 1
mov 1, a MSEore J © mov 1, b sStore J

mov b, %ebx ,;Load mov a, %eax ,load

R RN D W =
R O N = b W

3 3
1 1
2 4
4 2
1 1
1 1

© RN W N =
R, RN N W =

Sequential consistency implies that no
execution ends with %eax = %ebx = 0.
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e An execution induces a “ " relation,
which we shall denote as =.

o The = relation is , meaning that for any two
distinct instructions x and y, either x = y ory = x.

» The = relation respects , the order
of instructions in each processor.

e A LOAD from a location in memory reads the value

written by the STORE to that location
according to 2.

o For the memory resulting from an execution to be
sequentially consistent, there must exist such a
linear order =» that yields that memory state.

© 2012-2018 by the Lecturers of MIT 6.172 6



'SPEED |
LIMIT

KPER ORDER OF 6.172J

© 2012-2018 by the Lecturers of MIT 6.172



Mutual-Exclusion Problem

Recall

A is a piece of code that accesses
a shared data structure that must not be accessed
by two or more threads at the same time (

).

Most implementations of mutual exclusion

employ an atomic read-modify-write instruction

or the equivalent, usually to implement a lock:

- e.g., xchg, test-and-set, compare-and-swap, load-
linked-store-conditional.
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Mutual-Exclusion Problem

Can mutual exclusion be implemented with

LOAD’s and STORE’s as the only memory
operations?

Yes, Theodorus J. Dekker and Edsgar Dijkstra
showed that it can, as long as the computer
system is sequentially consistent.
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Peterson’s Algorithm

enum {A, B} turn;

widget x; //protected variable
bool A wants = false;
bool B wants = false;

7z
g /\
Alice W\ l'/\ Bob
A_wants = true; B_wants = true;
turn = B; turn = A;
while (B_wants && turmp==B); while (A_wants && turp==A);
frob(&x); //critical kection borf(&x); //critical ection

A_wants = false;

7

N4
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B_wants = false;
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Peterson’s Algorithm

Alice Bob
A_wants = true; B_wants = true;

turn = B; turn = A;

while (B_wants && turn==B); while (A_wants && turn==A);
frob(&x); //critical section borf(&x); //critical section
A_wants = false; 7 B_wants = false; 7
Intuition

o |If Alice and Bob both try to enter the critical section,

then whoever writes last to turn spins and the other
progresses.

o If only Alice tries to enter the critical section, then she
progresses, since B_wants is false.

» If only Bob tries to enter the critical section, then he
progresses, since A _wants is false.

But we can do better!
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Proof of Mutual Exclusion

Theorem. Peterson’s algorithm achieves
mutual exclusion on the critical section.

Proof.

o Assume for the purpose of contradiction that both
Alice and Bob find themselves in the critical
section together.

o Consider that each of them
executed the code before entering the critical
section.

e We shall derive a contradiction.
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Proof of Mutual Exclusion

Alice

while (B_wants && turn==B);

frob(&x); //critical section
A_wants =

© 2012-2018 by the Lecturers of MIT 6.172

false; 7

13

Bob
A_wants = true; B_wants = true;
turn = B; turn = A;

while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false; 7




Proof of Mutual Exclusion

Alice Bob
A_wants = true; B_wants = true;
CURhg=""B5

while (B_wants && turn==B);
frob(&x); //critical section

A_wants = false; 7

CURNRE""AS
while (A_wants && turn==A);

borf(&x); //critical section
B_wants = false; 7

o« WLOG, assume that Bob was the last to write to turn:
write,(turn = B) = writeg(turn = A).
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Proof of Mutual Exclusion

Alice Bob
A_wants = true; B_wants = true;
CURhg=""B5 turn = A;

while (B_wants && turn==B);

A_wants = false;

frob(&x); //critical section

4

while (A_wants && turn==A);
borf(&x); //critical section
B_wants = false; 7

o« WLOG, assume that Bob was the last to write to turn:

write,(turn =
o Alice’s program order:

B) = writeg(turn = A).

write, (A wants = true) = write,(turn = B).

© 2012-2018 by the Lecturers of MIT 6.172



Proof of Mutual Exclusion

Alice Bob
A_wants = true; B_wants = true;

turn = B; CURN=""As

while (B_wants && turn==B); while (A_wants && turn==A);
frob(&x); //critical section borf(&x); //critical section
A_wants = false; 7 B_wants = false; 7

o« WLOG, assume that Bob was the last to write to turn:
write,(turn = B) = writeg(turn = A).
o Alice’s program order:
write, (A wants = true) = write,(turn = B).
e Bob’s program order:
writeg(turn = A) = readgz(A_wants) = readg(turn) .
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Proof of Mutual Exclusion

Bob

Alice P
A_wants = true;

turn = B;-—-e

while (B_wants && turn==B);
frob(&x); //critical section

A_wants = false; 7

B_wang = M

turn = A; -
while (A_wants && turn==A);

borf(&x); //critical section
B_wants = false; 7

o« WLOG, assume that Bob was the last to write to turn:
write,(turn = B) = writeg(turn = A).

o Alice’s program order:

write, (A wants = true) = write,(turn = B).

e Bob’s program order:

writeg(turn = A) = readgz(A_wants) = readg(turn) .

e What did Bob read?

A wants: true
turn: A

} Bob should spin. Contradiction. =
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Starvation Freedom

Theorem: Peterson’s algorithm guarantees

- While Alice wants to execute
her critical section, Bob cannot execute his critical
section twice in a row, and vice versa.

Proof. Exercise. m

© 2012-2018 by the Lecturers of MIT 6.172 18
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Memory Models Today

e No modern-day processor implements sequential
consistency.

o All implement some form of
e Hardware actively reorders instructions.
o Compilers may reorder instructions too.
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Instruction Reordering

mov 1, a ;Store mov b, %ebx ;Load
mov b, %ebx ;Load mov 1, a ;Store

Program Order Execution Order

Q. Why might the hardware or compiler decide to
reorder these instructions?

A. To obtain higher performance by covering load
latency —
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Instruction Reordering

mov 1, a ;Store mov b, %ebx ;Load
mov b, %ebx ;Load mov 1, a ;Store

Program Order Execution Order

Q. When is it safe for the hardware or compiler to
perform this reordering?

A. When a + b.
A’. And there’s no concurrency.
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Hardware Reordering

Load Bypass

— Store Buffer >
Processor Network

<€

< J

e The processor can issue STORE’s faster than the
network can handle them =
e Since a LOAD can stall the processor unt|I it is satisfied,
, bypassing the store buffer.
e If 2 LOAD address matches an address in the store
buffer, the store buffer returns the result.
e Thus, a LOAD can a STORE to a different address.

23
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x86-64 Total Store Order

Instruction Trace

tor
tore
Loadl
oad
ore
Store4
Load3
oad

oad

4

© 2012-2018 by the Lecturers of MIT 6.172

House rules:

1. LOAD’s are notreordered with LOAD’s.
2. STORE’s are notreordered with STORE’s.
3. STORE’s are notreordered with prior

LOAD’s.

. A LOAD may be reordered with a prior

STORE to a different location but not
with a prior STORE to the same location.

. LOAD’s and STORE’s are rnot reordered

with LOCK instructions.

. STORE’s to the same location respect a
. LOCK instructions respect a

. Memory ordering preserves

(“causality”).

24



x86-64 Total Store Order

House rules:

_ 1. LOAD’s are notreordered with LOAD’s.
Instruction Trace 2. STORE’s are notreordered with STORE’s.
3. STORE’s are not reordered with prior

AN LOAD’s.

Store2 4 \ , L ior
Load1 4  Total Store Ordering t
Load2 v (TSO) is weaker than tion.
Store3 5.1 sequential consistency. [ed

Store4 s _
- RE’s to the same location respect a
Load3

Loacs 7. LOCK instructions respect a
Load5
4 8. Memory ordering preserves
(“causality”).
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Processor O Processor 1

mov 1, a ;Store mov 1, b ;Store

mov a, %eax ,Load

mov b, %ebx ;Load

© 2012-2018 by the Lecturers of MIT 6.172 2



Impact of Reordering

Processor O

)

mov b, %ebx
mov 1, a

&0 OO

;Load
;Store

J

The ordering {2, 4, 1, 3) produces %eax

Processor 1

)

mov a, %eax ;Load
mov 1, b ;Store

e OO

%ebx = 0.

/nstruction reordering violates
sequential consistency!

© 2012-2018 by the Lecturers of MIT 6.172
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Further Impact of Reordering

Peterson’s algorithm revisited

Alice

™

Bob

™

A wants =
turn = B;

A wants =

tr‘ue;&)
while (B_wants turn==B);

frob(&x); //critical section

false;

7

B_wants = true;
turn = A;
while (A_wants turn==A);

borf(&x); //critical section
B wants = false; 57

e The LOAD’s of B_wants and A wants can be reordered
before the STORE’s of A wants and B_wants,
respectively.

e Both Alice and Bob might enter their critical sections
simultaneously!
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o A (or ) is a hardware
action that enforces an ordering constraint between the
instructions before and after the fence.

» A memory fence can be issued explicitly as an
instruction (x86: mfence) or be performed implicitly by
locking, exchanging, and other synchronizing
Instructions.

e The Tapir/LLVM compiler implements a memory fence

via the function atomic_thread fence() defined in the
C header file stdatomic.h.*

o The typical cost of a memory fence is comparable to
that of an L2-cache access.

*See http://en.cppreference.com/w/c/atomic .
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http://en.cppreference.com/w/c/atomic

Alice

Bob

A wants = true,;

turn = B;

while (B _wants && turn==B);
frob(&x); //critical section
A wants = false;

7

B wants = true;

turn = A;

while (A wants && turn==A);
borf(&x); //critical section
B wants = false; 7

can restore sequential consistency.

A wants = true,;

turn = B;

atomic_thread fence();

while (B_wants && turn==B);
frob(&x); //critical section
A _wants = false;

4

B wants = true;

turn = A;

atomic_thread fence();

while (A _wants && turn==A);
borf(&x); //critical section
B_wants = false; £;7

Well, sort of. You also need to make sure
that the compiler doesn’t screw you over.
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Alice

Bob

A wants =
turn = B;
atomic_thread fence();

while (B _wants && turn==B);
asm volatile("":::"memory");
frob(&x); //critical section
asm volatile("":::"memory");
A wants = false;

true;

v

B wants =
turn = A;
atomic_thread fence();

while (A wants && turn==A);
asm volatile("":::"memory");
borf(&x); //critical section
asm volatile("":::"memory");
B wants = false;

true;

v

Back in the day, in addition to the memory fence:

e you must declare variables as volatile to prevent the
compiler from optimizing away memory references;

e yOou need

© 2012-2018 by the Lecturers of MIT 6.172
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Alice Bob

atomic_store(&A_wants, true); atomic_store(&B_wants, true);

atomic_store(&turn, B); atomic_store(&turn, A);

while (atomic load(&B wants) && while (atomic load(&A wants) &&
atomic_load(&turn)==B); atomic_load(&turn)==A);

frob(&x); //critical section borf(&x); //critical section

atomic_store(&A wants, false);£;7 atomic_store(&B _wants, false);z;7

The C11 language standard defines its own weak
memory model, in which you can control hardware and
compiler reordering of memory operations by:

e Declaring variables as Atomic; and

» Using the functions atomic_load(), atomic_store(),
etc. as needed.

See http://en.cppreference.com/w/c/atomic.
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http://en.cppreference.com/w/c/atomic

Implementing General Mutexes

Theorem [Burns-Lynch]. Any n-thread deadlock-free
mutual-exclusion algorithm using only LOAD and
STORE memory operations requires Q(n) space.

Theorem [Attiya et al.]: Any n—-thread deadlock-free
mutual-exclusion algorithm on a modern
machine must use an expensive operation such
as a or an

operation.

Thus, hardware designers are justified when they
implement special operations to support atomicity.

33
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Memory operations

e LOAD

e STORE

e CAS (compare-and-swap)

© 2012-2018 by the Lecturers of MIT 6.172 % This image is in the public domain.


https://openclipart.org/detail/190367/toolbox

Compare-and-Swap

The operation is provided by the
cmpxchg instruction on x86-64. The C header file
stdatomic.h provides CAS via the built-in function

atomic_compare exchange strong()
which can operate on various integer types.*

Specification

bool CAS(T *x, T old, T new) { o Executes atomically.
1 * —— . .
i, W AL » Implicit fence.
X = new;
return true;
)
return false;
) 4

* See http://en.cppreference.com/w/cpp/atomic/atomic compare exchange .
© 2012-2018 by the Lecturers of MIT 6.172 %



http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange

Mutex Using CAS

Theorem. An n-thread deadlock-free
mutual-exclusion algorithm using CAS
can be implemented using O(1) space.

Proof.

void lock(int *lock var) {
while (!CAS(*lock var, false, true));
}

void unlock(int *lock var) {
*lock _var = false;

}

Just the space for the mutex itself. ®
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int compute(const X& v);
int main() {
const int n = 1000000;
extern X myArray[n];

1/ eele

int result = 0;

cilk for (int 1 = 0; i < n; ++1) {
result += compute(myArray[i]);

}

printf(

return 0;

he result is: %f\n”, result );

38
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Mutex Solution

int compute(const X& v);
int main() {
const int n = 1000000;
extern X myArray[n];
mutex L;

/77 ¥

int result = 0;

cilk for (int i = 9; 1 < n; ++i) {
int temp = compute(myArray[i]);
Ealiock @5
result += temp;
L Hiinleoeck(®s

¥
printf( "The result is: %f\n”, result );

return 0;
}
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Mutex Solution

. i
Yet all we want ;egconSt X& V)i [Q. What happens if the

is to atomically |nt n = 1000000; operating system
execute a LOAD [X myArray[n]; swaps out a loop
of x followed ) iteration just after it
by a store of x. acquires the mutex?

ult = 0;
for (int i = 0; i < n; ++1) {
temp = compute(myArray[i]);

Apck();
result += temp; A. All other loop
L.unlock(); Iterations must wait.

¥

printf( "The result is: %f\n”, result );

return 0;
}
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int result = 0;

(int 1 = 0; i < n; ++1) {
int temp = compute(myArray[i]);
int old, new;
do {

old = result;
new = old + temp;
} while (!CAS(&result, old, new));

Q. Now what happens if | A. No other loop

the operating system iteration needs to
swaps out a loop wait. The algorithm
iteration? | 1S

© 2012-2018 by the Lecturers of MIT 6.172 4
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struct Node {
Node* next;
int data;

Ji

struct Stack {
Node* head;

head: 77 75 | o
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void push(Node* node) {
do {
hode->next = head;
} while (!CAS(&head, node->next, node));

head:

44
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Lock-Free Push with Contention

void push(Node* node) {
do {
hode->next = head;
} while (!CAS(&head, node->next, node));

head: 77 | e——> 75 | o

\ The compare-and-swap fails!
33 [ &1V 81 [ §
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Lock-Free Pop

Node* pop() {
Node* current = head;

while (current) {
if (CAS(&head, current, current->next)) break;
current = head;

¥

return current;

¥

head:

current:

46
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Compare and compare-and-swap

acquires a cache line in exclusive
mode, invalidating the cache line in other caches.

Result: High contention if all processors are doing
CAS’s to same cache line.

Better way: First read if value at memory location
changed before doing CAS, and only do CAS if value

didn’t change.

© 2012-2018 by the Lecturers of MIT 6.172 4



Lock-Free Push and Pop

void push(Node* node) {
do {
hode->next = head;
} while (head != node->next ||
ICAS(&head, node->next, node));

¥

Node* pop() {
Node* current = head;

while (current) {
if (head == current &&
CAS(&head, current, current->next)) break;
current = head;

¥

return current;

¥

© 2012-2018 by the Lecturers of MIT 6.172 8



o Efficient lock-free algorithms are known for a variety
of classical data structures (e.g., linked lists, queues,
skip lists, hash tables).

» In theory, a thread might starve. Because of
contention, its operation might never complete. In
practice, starvation rarely happens.

e is revolutionizing this area.
» Allows executing a block of code atomically.

Practical Issues

» Memory management.
o Contention.

» The ABA problem.
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'SPEED |
LIMIT

KPER ORDER OF 6.172J

© 2012-2018 by the Lecturers of MIT 6.172 %0



— E— E—

— \\

15

94 20 | o

head:

current:

1. Thread 1 begins to pop the node containing 15, but
stalls after reading current->next.
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ABA Example

P e ~
head: \—\U”% —F—> 26 | o
current:

1. Thread 1 begins to pop the node containing 15, but
stalls after reading current->next.
2. Thread 2 pops the node containing 15.
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ABA Example

head: 15 ~— 94j 26 °
current: §

1. Thread 1 begins to pop the node containing 15, but
stalls after reading current->next.

2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94.
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ABA Example

headzs/z7 If—(ér94 — N 26 [ o

current: “

1. Thread 1 begins to pop the node containing 15, but
stalls after reading current->next.

2. Thread 2 pops the node containing 15.

. Thread 2 pops the node containing 94.

4. Thread 2 pushes the node 7, reusing the node that
contained 15.

W
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head: 497 ?i94 3{26 .

current: “

1. Thread 1 begins to pop the node containing 15, but
stalls after reading current->next.

2. Thread 2 pops the node containing 15.

3. Thread 2 pops the node containing 94.

4. Thread 2 pushes the node 7, reusing the node that
contained 15.

5. Thread 1 resumes, and its CAS succeeds, removing
7, but putting back on the list.
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Versioning
e Pack a with each pointer in the
same atomically updatable word.

e Increment the version number every time the
pointer is changed.

o Compare-and-swap both the pointer and the
version number as a single atomic operation.

Issue
o Version numbers may need to be very large.

Reclamation
e Prevent node reuse while pending requests exist.

e For example, prevent node 15 from being reused
as hode 7 while Thread 1 still executing.
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