6.172 —— 4
Performance I I I H I SPEED
LIMIT

Engineering

of Software
PER ORDER OF 6.172

Systems

The Cilk Runtime
System

Tao B. Schardl

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Cilk Programming

Cilk allows programmers to make software run faster

using parallel processors.

Serial matrix multiply

ForT (MAted =05 -isXon ;" +1)
for (int k = @; k < n; ++k)
SO TV = OR S <V h aN))
GRS A PR = a i TR iy

Cilk matrix multiply

4

cilk- fera(int. 1 =05 i%< n; &%)
for (int k = @; k < n; ++k)
SO TV = OR S <V h aN))
GRS A PR = a i TR iy

© 2008-2018 by the MIT 6.172 Lecturers 2

4

Running time Ts.

Running time T, on P
processors.

Recall: Cilk Scheduling

e The Cilk concurrency o TR e
platform allows the i I
programmer to express)i(nE&clE;ki;pg\im fib(n-1);
logical parallelism in an U
application. i, 4 -

e The Cilk scheduler maps } |
the executing program 4
onto the processor cores

. : Memory /0O
dynamically at runtime. [] []

e Cilk’s work-stealing , .
scheduling algorithm is < Network)

provably efficient. $

© 2008-2018 by the MIT 6.172 Lecturers

Program
input

© 2008-2018 by the MIT 6.172 Lecturers

int64_t fib(int64_t n) {
if (n < 2) { return n; }
else {
int64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

} Cilk source

y

Parallel
performance

This lecture:
How does Cilk
work?

A More Accurate Picture

© 2008-2018 by the MIT 6.172 Lecturers

int64 t fib(int64 t n) {
if (n < 2) { return n; }
else {
inted t x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);
cilk_sync;
return (x + y);

} Cilk source

=
v

Binary J

Program —>®®®
input

Parallel
performance

Cilk runtime-
system library

libcilkrts.so

a

_

The compiler and
runtime library

together implement
the runtime system

~

J

What the Compiler Generates

I int foo(int n) {
Cllk COde __cilkrts_stack frame_ t sf;
int foo(int n) { E;l)l(kr;c/?_enter_frame(&S-F);
TR X, Y if (!setjmp(sf.ctx))
X = cilk _spawn bar(n); szwnzb?"(&x’ n);
y = baz(n);
y = baz(n); if (sf.flags & CILK_FRAME_UNSYNCHED)
cilk_sync; if (!setjmp(sf.ctx))
3 ! __cilkrts_sync(&sf);
return x + Y int result = x + y;
} Z;;7 __cilkrts_pop frame(&sf);
if (sf.flags)

__cilkrts_leave frame(&sf);
return result;

Cilk | i
compiler J void spawn_bar(int *x, int n) {

__cilkrts _stack frame st;
__cilkrts_enter_frame_fast(&sf);

__cilkrts_detach();
*x = bar(n);

¢ pseUdOCOde Of | _cilkrts_pop_frame(asf);
Compiled reSUIt __cilkrts _leave frame(&sf); 7
}

v

© 2008-2018 by the MIT 6.172 Lecturers

 REQUIRED FUNCTIONALITY
 PERFORMANCE CONSIDERATIONS
 |[MPLEMENTING A WORKER DEQUE
SPAWNING COMPUTATION
STEALING COMPUTATION
SYNCHRONIZING COMPUTATION

© 2008-2018 by the MIT 6.172 Lecturers

SPEED |
LIMIT

KPER ORDER OF 6.172}

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Execution Model

it “ELBUNC W neh _
T %6 T8 2) Reit Urh '’ Ny Exanuﬂe.
else { flb(4)
A =

X = cilk spawn fib(n-1);
y = fib(n-2);
cilk sync;

RAELIT, CX0T -k, /4

The computation dag
unfolds dynamically.

|

© 2008-2018 by the MIT 6.172 Lecturers

Serial Execution

%P'L]D int fib (int n) {
e bn Y2 Raturi’ Ny
else {
int X o s

= cilk _spawn fib(n-1);

y = fib(n-2);

cilk sync;
return X '+ ¥,

N

Example:
fib(4)

ﬁo

Available for
execution.

)Y

€ | | Available for
' execution.
© 2008-2018 by the MIT 6.172 Lecturers o

Available for
execution.

Parallel Execution: Steals

P2 | . : :
%rRD ian,c:lb LI 8 Example:
%rip e bn Y2 Raturi’ Ny Fib(4)
else {
A =
D ot —
P2

%rip

How does a processor start
executing in the middle of
a running function?

© 2008-2018 by the MIT 6.172 Lecturers

117

Parallel Execution: Syncs

%:.Li -Lint Tl DS TIE" NEh-={ Example:
e bn Y2 'Ret urh’ Ny , '
else { Can’t fib(4)

P> Int x, y; execute!

%'“PIP-’) ;}élz_sgz)aw .

o y = T1b(n-2);

j:lig I cilk sync;

return X '+ ¥,
}
}

How does a cilk sync wait only
on nested subcomputations?

© 2008-2018 by the MIT 6.172 Lecturers 12

Required Functionality

» A single worker must be able to execute the
computation on its own similarly to an
ordinary serial computation.

e A thief must be able to jump into the
middle of an executing function to steal a
continuation.

e A sync must stall a function’s execution
until child subcomputations complete.

What other

functionality is

needed?
_ J

13

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Cactus Stack

Cilk supports C’s rule for pointers: A pointer to stack
space can be passed from parent to child, but not from

hil :
child to parent Views of stack

C C C
E

D

Cilk’s cactus stack supports
multiple views in parallel.

© 2008-2018 by the MIT 6.172 Lecturers "

Recall: Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called
called
called

called |

called

Each deque contains a mixture of
spawned frames and called frames.

© 2008-2018 by the MIT 6.172 Lecturers

15

15

Recall: Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called
called

16

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called
called
called

© 2008-2018 by the MIT 6.172 Lecturers i

Recall: Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

called called I

When a worker runs out of work, it steals
from the top of a random victim’s deque.

called
called

called

© 2008-2018 by the MIT 6.172 Lecturers 18

Recall: Work Stealing

Each worker (processor) maintains a work deque of
ready strands. and it manipulates the bottom of the
deque like| A steal takes all frames up

to the next spawned frame.

spawned

called
called | called

When a worker runs out of work, it steals
from the top of a random victim’s deque.

19

called
called

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Work Stealing

Each worker (processor) maintains a work deque of
ready strands, and it manipulates the bottom of the
deque like a stack [MKH90, BL94, FLR9S8].

What is involved in\
stealing frames?

 What

called
called

spawne
called

e I called Ssynchronization
Spawnec called IS needed?
| | - What happens to
C the stack?
| | - How efficient can
ic hbe?
When a worker runs out of Work th|s be /

from the top of a random victim’s deque.

© 2008-2018 by the MIT 6.172 Lecturers 20

© 2008-2018 by the MIT 6.172 Lecturers

Required Functionality

» A single worker must be able to execute the
computation on its own similarly to an
ordinary serial computation.

e A thief must be able to jump into the
middle of an executing function to steal a
continuation.

e A sync must stall a function’s execution
until child subcomputations complete.

e The runtime must implement a cactus stack
for its parallel workers.

e Thieves must be able to handle mixtures of
called spawned functions.

21

" SPEED
LIMIT

OO

PER ORDER OF 6.172

PERFORMANCE
CONSIDERATIONS

© 2008-2018 by the MIT 6.172 Lecturers

Recall: Work-Stealing Bounds

Theorem [BL94]. The Cilk work-stealing scheduler
achieves expected running time

Tp ~T,/P +|O(T,)
on P processors.

Time workers Time workers
spend working. spend stealing.

If the program achieves linear speedup, then
workers spend most of their time working.

© 2008-2018 by the MIT 6.172 Lecturers z

Parallel Speedup

Ideally, parallelizing a serial code makes it run P times

faster on P processors.

Serial matrix multiply

for (int 1 = 0; i < n; ++1)
for (int k = 0; k < n; ++k)
RO (TS = ORI <V i)

C[i][]j] += A[i][k] * B[k][3il;
[11[3] += A[1][k] [][J]V

Cilk matrix multiply

cilk - fera(iht, 1 =05 i%< n; &%)
for (int k = @; k < n; ++k)
SO (TS = OR S <V R aN))

C[i][]j] += A[i][k] * B[k][3il;
[11[3] += A[1][k] [][J]V

© 2008-2018 by the MIT 6.172 Lecturers 2

Running time Ts.

With sufficient
parallelism, running
timeis Tp = T,/P.

Goal: T, = T¢/P,
meaning that T; = T,.

Let T denote the work of a serial program.

Suppose the serial program is parallelized.
et T, denote the work of the parallel

orogram, and let T denote the span of the
narallel program.

To achieve linear speedup on P processors
over the serial program, i.e., T, = T¢/P, the
parallel program must exhibit:

» Ample parallelism: T,/T, > P.

e High work efficiency: T¢/T, = 1.

© 2008-2018 by the MIT 6.172 Lecturers 25

The Work-First Principle

To optimize the execution of programs with
sufficient parallelism, the implementation of

the Cilk runtime system works to maintain high

work-efficiency by abiding by the work-first

principle:
a N
Optimize for the ordinary serial
execution, at the expense of some
additional computation in steals.
L /

© 2008-2018 by the MIT 6.172 Lecturers

Division of Labor

The work-first principle guides the division of

the Cilk runtime system between the compiler
and the runtime library.

Compiler

e Uses a handful of small data structures, e.g.,
workers and stack frames.

o Implements optimized fast paths for
execution of functions when no steals have
occurred.

Runtime library

e Uses larger data structures.

 Handles slow paths of execution, e.g., when a
steal occurs.

© 2008-2018 by the MIT 6.172 Lecturers 27

" SPEED
LIMIT

OO

PER ORDER OF 6.172

IMPLEMENTING A WORKER
DEQUE

© 2008-2018 by the MIT 6.172 Lecturers

Running Example

ity foe'Cint™n) = {

DR X, Y
X = cilk_spawn bar(n);
y = baz(n);

cilk sync;
PETUIRX = Vs

} 4

e Function foo is a spawning function,
meaning that foo contains a cilk spawn.
e Function bar is spawned by foo.

e The call to baz occurs in the continuation of
the spawn.

© 2008-2018 by the MIT 6.172 Lecturers 2

Requirements of Worker Deques

PROBLEM: How do we implement a worker’s deque?

e The worker should operate its own deque like a
stack.

o A steal needs to transfer ownership of several
consecutive frames to a thief.

o A thief needs to be able to resume a continuation.

© 2008-2018 by the MIT 6.172 Lecturers 30

called
called called
called called
S| called
called

Basic Worker-Deque Design

IDEA: The worker deque is an

external structure with

pointers to stack frames.
A Cilk worker maintains

Concept

head and tail pointers to

its deque.

- Stealable frames maintain
a local structure to store
information necessary for

Cilk wor

stealing the frame.

Design

© 2008-2018 by the MIT 6.172 Lecturers

head
tail

Ker

| called
called

called

v
Call Stack

frame
Deque | frame

frame

\ frame

"~/ frame
7 frame

31

Implementation Details

The Intel Cilk Plus runtime elaborates on this
idea as follows:
e Every spawned subcomputation runs in its
own spawn-helper function.
e The runtime maintains three basic data
structures as workers execute work:
o A worker structure for every worker used
to execute the program.
o A Cilk stack-frame structure for each
instantiation of a spawning function.
e A spawn-helper stack frame for each
instantiation of a cilk spawn.

© 2008-2018 by the MIT 6.172 Lecturers 32

Spawn-Helper Functions

I Mint OO, Giuman,)
Cllk COde __cilkrts_stack frame_ t sf;
int foo(int n) { E;l)l(kr;c/?_enter_frame(&S-F);
TR X, Y if (!setjmp(sf.ctx))
x = cilk_spawn bar(n); | Srunab s
y = baz(n);
y = baz(n); if (sf.flags & CILK_FRAME_UNSYNCHED)
cilk_sync; if (!setimp(sf.ctx))
3 ! __cilkrts_sync(&sf);
return x + Y int result = x + y;
} Z;;7 __cilkrts_pop_frame(&sf);
if (sf.flags)

__cilkrts_leave frame(&sf);
return result;

Gilk) :
compiler J

v

void spawn_bar(int *x, int n) {
__cilkrts _stack frame st;
__cilkrts_enter_frame_fast(&sf);
__cilkrts_detach();
*x = bar(n);

C pseUdOCOde Of __cilkrts_pop_frame(&sf);
Compiled result __cilkrts_leave_frame(&sf); 7
}

© 2008-2018 by the MIT 6.172 Lecturers 33

Cilk Stack-Frame Structures

int foo(int n) { C pseudocode of
cilkrts_stack frame_ t sf; compiled result

::cilkrts_enter_frame(&sf);
TR XS

if (Isetjmp(sf.ctx)) [Cilk stack—frame}

y = baz(n);
if (sf.flags & CILK_FRAME_UNSYNCHED)
if (!setjmp(sf.ctx))
__cilkrts_sync(&sf)— . :
int result = x + y; void spawn_bar(int *x, int n) {

__cilkrts_pop_frame(&sf __cilkrts_stack_frame sf;
if (sf.flags) __cilkrts_enter_frame_fast(&sf);
__cilkrts_leave frame —Cilkrts_detach();

return result; *x = bar(n);
} __cilkrts _pop frame(&sf);

cilkrts leave frame(&sf);

b el 4

34

© 2008-2018 by the MIT 6.172 Lecturers

The Cilk Stack Frame (Simplified)

Each Cilk stack frame stores:

e A context buffer, ctx,
which contains enough
information to resume a
function at a continuation, Cilk stack frame
i.e., after a cilk spawn or
cilk sync.

e An integer, flags, that
summarizes the state of
the Cilk stack frame. >

Cilk stack frame

e A pointer, parent, to its

parent Cilk stack frame. Cilk stack frame

© 2008-2018 by the MIT 6.172 Lecturers 3

The Cilk Worker Structure (Simplified)

Worker’s call stack

Each Cilk worker maintains:

» A deque of stack frames that main
can be stolen. foo
* A pointer to the current stack foo sf
frame, spawn_bar
Dequ
Example: Cilk worker /J spawn_bar_s¥
Function foo y bar
spawned bar, head
which called tail P quux
quux, which | cyrrent sf [quux_sf

spawned
Spaw \ spawn_fred
spawn_fred sf

36

© 2008-2018 by the MIT 6.172 Lecturers

SPEED |
LIMIT

KPER ORDER OF 6.172}

© 2008-2018 by the MIT 6.172 Lecturers 37

Code for a Spawning Function

C pseudocode of a spawning function

ntT fee'Cint™n) = {

B &l LKty staak fraje " s ik
__cilkrts_enter_frame(&sf);

stack-frame structure.

<[\Create and initialize a Cilk |

J

i ¥ G IV

if (!setjmp(sf.ctx)|)=———7

Prepare to spawn.

B o

spawn_bar(&x, n);

y = baz(n);

Invoke the spawn helper.

if (!setjmp(sf.ctx))
___cilkrts sync(&sf);

if (sf.flags & CILK_FRAME_UNSYNCHED)

int result = x + y;
cilkrts pop frame(&sf);

4 Perform a sync.

C

it (sf.flags)

__cilkrts_leave_frame(&sf);

ean up the Cilk

stack-frame structure.

return result;

)

© 2008-2018 by the MIT 6.172 Lecturers

38

7&:Iean up the deque.

Code for a Spawn Helper

C pseudocode of a spawn helper

void spawn_bar(int *x, int n) {

_ cilkrts_stack_frame sf;

__cilkrts _enter frame fast(&sf);

a Cilk stack-frame
structure.

rCreate and initialize\

.

__cilkrts detach() ;| ==

th

g

(Upate the deque to allow |

e parent to be stolen.

J

= S ——

N

Invoke the spawned subroutine.

__cilkrts pop frame(&st);

L,

__cilkrts _leave frame(&sf);

~

™

|
(Clean up the Cilk

stack-frame structure.

J

=

© 2008-2018 by the MIT 6.172 Lecturers

39

(

Clean up the deque
and attempt to return.

|

Entering a Spawning Function

When execution enters a spawning function, the
Cilk worker’s current stack-frame structure is
updated.

Deque

Cilk worker Call stack
main
head fo0
tail
foo sf
current_sf —

© 2008-2018 by the MIT 6.172 Lecturers 40

Preparing to Spawn

Cilk code

ntT fee'Cint™n) = {
X = cilk spawn bar(n);

47 5

C pseudocode

Cilk uses the setjmp
function to allow thieves to

steal the continuation.

int foo(int n) {

if (llsetjmp(sf.ctx)|)
spawn_bar(&x, n);

- v

© 2008-2018 by the MIT 6.172 Lecturers

The setjmp function stores A
information necessary for
resuming the function at the
setjmp into the given buffer.
3¢ jmp g y

QUESTION: What information
needs to be saved?)

" ANSWER: Registers h

%rip, %rbp, %rsp, and

\callee—saved registers

41

)

Deque

C pseudocode Cilk worker Call stack

int foo(int n) { head

if (!setjmp(sf.ctx)) tail
spawn_bar(&x, n);| | current_sf

foo st

}
void spawn_bar(int *x, int n) {
__cilkrts _stack frame st;
__cilkrts_enter frame_fast(&sf);
__cilkrts_detach();
*x = bar(n);

X 7

© 2008-2018 by the MIT 6.172 Lecturers 42

spawn_bar_sf

Deque

C pseudocode Cilk worker Call stack

int foo(int n) { head

if (!setjmp(sf.ctx)) tail
spawn_bar(&x, n); |current_sf

}
void spawn_bar(int *x, int n) {
__cilkrts _stack frame st;
__cilkrts _enter frame fast(&sf);
__cilkrts_detach();

*x = bar(n);

X y

43

© 2008-2018 by the MIT 6.172 Lecturers

Deque

C pseudocode Cilk worker Call stack

int foo(int n) { head

if (!setjmp(sf.ctx)) tail
spawn_bar(&x, n); |current_sf

}
void spawn_bar(int *x, int n) {
__cilkrts _stack frame st;
__cilkrts_enter frame_fast(&sf);
__cilkrts detach();
*x = bar(n);

X y

44

© 2008-2018 by the MIT 6.172 Lecturers

Deque

C pseudocode Cilk worker Call stack

int foo(int n) { head

if (!setjmp(sf.ctx)) tail
spawn_bar(&x, n); |current_sf

}
void spawn_bar(int *x, int n) {
__cilkrts _stack frame st;
__cilkrts_enter frame_fast(&sf);
__cilkrts_detach();
*x = bar(n);

£ y

45

© 2008-2018 by the MIT 6.172 Lecturers

C pseudocode

Deque

Cilk worker Call stack

head
tail
current_sf

X banitn®

void spawn_bar(int *x, int n) {

cilkrts pop frame(&sf);

¥

_ cilkrts_leave_frame(&sf);

4

© 2008-2018 by the MIT 6.172 Lecturers

46

Deque

Cilk worker Call stack

head
tail
current_sf

C pseudocode
void spawn_bar(int *x, int n) {

X banitn®
cilkrts pop frame(&sf);
_ cilkrts_leave_frame(&sf);

} y

© 2008-2018 by the MIT 6.172 Lecturers 4

Deque

Cilk worker Call stack

head
tail
current_sf

C pseudocode e S

void spawn_bar(int *x, int n) {

xR baritny®
__cilkrts_pop_frame(&sf);
__cilkrts_leave_frame(&sf);

} \/ May or may not return, o
depending on what’s in

the worker’s deque.

,/

© 2008-2018 by the MIT 6.172 Lecturers 48

Popping the Deque

In cilkrts leave frame, the worker tries to

pop the stack frame from the tail of the deque.

There are two possible outcomes:

1. If the pop succeeds, then the execution
continues as normal.

2. If the pop fails, then the worker is out of
work to do. It thus becomes a thief and
tries to steal work from the top of a random

victim’s deque.

[Question: Which case\ [Answer: Case]_J
IS more important to

optimize?

J

49

© 2008-2018 by the MIT 6.172 Lecturers

SPEED |
LIMIT

KPER ORDER OF 6.172}

© 2008-2018 by the MIT 6.172 Lecturers >0

Recall: Stealing Work

Conceptually, a thief takes frames off of the
top of a victim worker’s deque.

called spawned

called called

called Spawned’ called
called
called

© 2008-2018 by the MIT 6.172 Lecturers °1

Stealing a Frame

A thief steals from the head of the victim
worker’s deque.

Deque

Thief

-

d !
¢ eque

Need to handle
concurrent
accesses to the

urrent st

Cilk worker
head /

tail |

Victim’s
Call stack

—

Victim

Deque

Cilk worker

head

Ny
tail (Y

current_sf

7

main

foo

foo st

spawn_bar

© 2008-2018 by the MIT 6.172 Lecturers

52

» spawn_bar st

bar

Svynchronizing Deque Accesses

Worker | void push(/
protocol | tall++;

The Workér e worker and thief
pops the rdinate operations

} .
bool WA() the deque u5|.ng
tail--; | optimistically. THE protocol:
TR dHea d wararmes -
e Thief proto/ The thief \
1 gkl bool steal(| always grabs
’Fj‘__lzﬁd G iOCE(L)i a lock before
! ead > tai ead++; .
tailt+; if (head| OPe€ratingon
unlock(L); head--; the deque. /
return FAILURE; unlock(B;
} return FAILURE;
/ AP | A A 1 }
The worker only grabs h unlock(L);
a lock if the deque return SUCCESS;
| appears to be empty.] } ZC

/

© 2008-2018 by the MIT 6.172 Lecturers

53

Resuming a Continuation

Cilk uses the longjmp function to resume a
stolen continuation.

C pseudocode Previously, the victim
int foo(int n) { performed a setjmp to store

_~___ register state in foo_st.ctx.
if (llsetjmp(sf.ctx)|) D o /
spawn_bar(&x, n); €quUe Victim’s
ilk worker Call stack
} main
Thief
foo
__—7 | foo_sf

4 . :
Executing longjmp(current_sf->ctx,1)
sets the thief’s registers to start

executing at the location of the setjmp.)

ythe vilfl 6.172 Lecturers

Resuming a Continuation

The contract between setjmp and longjmp

ensures the thief resumes the continuation.

» On its direct invocation, setjmp(buffer)
returns 0.

e Invoking longjmp(buffer, x) causes the

setjmp to effectively return again with the
integer value x.

4 . O\
C pseudocode Because a thl:l)ef re”a.ches this
int foo(int n) { . point by calling
longjmp(current_sf->ctx,1),

s (Isetimp(sf.ctx) the condition fails, and the thief
spawn_bar(&x, n); jumps to the continuation. y

- >

© 2008-2018 by the MIT 6.172 Lecturers %

Implementing the Cactus Stack

Thieves maintain their own call stacks and use
pointer tricks to implement the cactus stack.

Example: A thief steals

the continuation of
foo, and then calls

baz.

Thief’s %rbp

Thief’s call stack

Thief’s %rsp

%rbp

Thief’s %rsp =»

baz

© 2008-2018 by the MIT 6.172 Lecturers

56

Victim’s call stack

main

foo

foo st

spawn_bar

spawn_bar st

bar

SPEED |
LIMIT

KPER ORDER OF 6.172}

© 2008-2018 by the MIT 6.172 Lecturers >

Recall: Nested Synchronization

it “ELBUNC W neh
: . Example:
156N 8 2) Reit Urh '’ Ny Py
else { ib(4)
aH e) gt AN Waiting on

x = cilk spa| P1 to sync!
y = fib(n-2);
cilk sync;

RAELIT, CX0T -k, /4

] | Synchronization happens
in a nested fashion.

|

© 2008-2018 by the MIT 6.172 Lecturers %8

Synchronization Concerns

If a worker reaches a cilk sync before all
spawned subcomputations are complete, the
worker should become a thief, but the
worker’s current function frame should not
disappear!

e The existing subcomputations might access
state in that frame, which is their parent
frame.

e In the future, another worker must resume
that frame and execute the cilk sync.

e The cilk sync only applies to nested
subcomputations of the frame, not to all
subcomputations or workers.

© 2008-2018 by the MIT 6.172 Lecturers 59

Full-Frame Tree

The Cilk runtime maintains a tree of full frames,
which stores state for parallel subcomputations.

. \ s N
— [A full frame keeps\ Other full

— track of its parent frames are

[‘ and child frames. | [suspended.J

-~

called

Processors

work on active
called full frames.
called

© 2008-2018 by the MIT 6.172 Lecturers

called
called

60

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

called
called

called

called

© 2008-2018 by the MIT 6.172 Lecturers o1

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.)

The thief steals the
full frame and
spawned creates a new full
called frame for the victim.

- J

called

called

called

© 2008-2018 by the MIT 6.172 Lecturers 62

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames. [)

The thief steals the
full frame and
creates a new full
frame for the victim.

-

called

called

called

© 2008-2018 by the MIT 6.172 Lecturers

63

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

called

called

called

called

called

*Full-frame illustrations resized for cleanliness.

© 2008-2018 by the MIT 6.172 Lecturers

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

spawned

called

called

called

called

called

© 2008-2018 by the MIT 6.172 Lecturers 65

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

called

called Jf -
‘spawned

By stealing the full R

frame, existing

pointers to parent full |

— frame are preserved. |
\

£

*Full-frame illustrations resized for cleanliness.
© 2008-2018 by the MIT 6.172 Lecturers 66

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

called

called

called

called

*Full-frame illustrations resized for cleanliness.
© 2008-2018 by the MIT 6.172 Lecturers o7

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

spawned
called

called

called

68

called

© 2008-2018 by the MIT 6.172 Lecturers

Maintaining Full Frames

Let’s see how steals can produce a tree of full
frames.

called

‘ Steal! \

*Full-frame illustrations resized for cleanliness.
© 2008-2018 by the MIT 6.172 Lecturers 69

called

called

called

Suspending Full Frames

a The full frame B
cannot sync because
of the running child
subcomputation.

B

called

called

Spawned

70

© 2008-2018 by the MIT 6.172 Lecturers

Suspending Full Frames

‘Spawned
Spawned’

spawned

‘Suspendw

71

Spawned’

spawned

called

© 2008-2018 by the MIT 6.172 Lecturers

Suspending Full Frames

Spawned

called
Spawned Spawned’

called called

Spawned’

spawned

called

72

© 2008-2018 by the MIT 6.172 Lecturers

Common Case for Sync

QUESTION: If the program has ample parallelism,
what do we expect will typically happen when
the program execution reaches a cilk sync?

ANSWER: The executing function contains no
outstanding spawned children.

How does the
runtime optimize
for this case?

© 2008-2018 by the MIT 6.172 Lecturers

Stack Frames and Full Frames

4)
Every full frame is

associated with a

Cilk stack frame.
_ J

called
called

© 2008-2018 by the MIT 6.172 Lecturers

called

c The flags field in
the Cilk stack frame
maintains the full

frame’s status.
\ J

74

Compiled Code for Sync

Cilk code C pseudocode
ntT fee'Cint™n) = { ntT fee'Cint™n) = {
TR X, Y %
X = cilk spawn bar(n); if (sf.flags &
y = baz(n); CILK_FRAME_UNSYNCHED)
€1 hlalfSYinc if (!setjmp(sf.ctx))
return X + y; ___cilkrts sync(&sf);
} 7
} y

The code compiled to implement a cilk sync
checks the flags field before performing an

expensive call to cilkrts sync in the Cilk
runtime library.

© 2008-2018 by the MIT 6.172 Lecturers &

More Cilk Runtime Features

The Cilk runtime system implements many

other features and optimizations:

e Schemes for making the full-frame tree
simpler and easier to maintain.

e Data structure and protocol enhancements
to support C++ exceptions.

e Sibling pointers between full frames to
support reducer hyperobjects.

e Pedigrees to assign a unique, deterministic
ID to each strand efficiently in parallel.

© 2008-2018 by the MIT 6.172 Lecturers 7

SPEED |
LIMIT

OO

KPER ORDER OF 6.172}

[SML17]

© 2008-2018 by the MIT 6.172 Lecturers 7

Question: When do cilk spawn, cilk sync, and

cilk for get compiled? —
— 9 P {Tradltlonal
Preprocessed gnswer

C source source LLVM IR

Collision Clang pre- Collision Clang code Collision

World.c processor World.i generator World.1ll1l
/4 /4 /4

Optimized
LLVM IR Assembly
LLVM Collision LLVM code Collision
optimizer World.ll generator World.s

/4 /4

© 2008-2018 by the MIT 6.172 Lecturers 8

Example: Normalize

__attribute ((const))
double norm(const double *X, int n);

void normalize(double *restrict Y,
const double *restrict X,
T).
oM (LNERIT =Rk 1 "< in ;M)
Y= X /A nenm (XS U h)E

} y
Jest: Random vector of n=64M elements
Machine: AWS c4.8xlarge Compiler. GCC 6.2
Running time: Tg¢ = 0.312 s

© 2008-2018 by the MIT 6.172 Lecturers &

Optimizing the Serial Code

(The norm function
__attribute_ ((const)) performs O(n) work.
double norm(const double *X, 1nt n);

void normalize(double *restr GCC can move the
const double 1 call to norm out of

Tnttn) 4 the serial loop.

Tomy (1NERL =0k 1 “<Jn; i)
YA = X1 T /e e O n)ﬂ&--"”—;;J

.

}

Work before hoisting: T(n)

O(n?)
Work after hoisting: T(n) = 0O(n)

© 2008-2018 by the MIT 6.172 Lecturers 80

GCC Compiling Cilk Code

Cilk code

-

Cilk |

void normalize(double *restrict VY,
const double *restrict X, int n) {
clleSran (int «“*# =05 i< nEYHEl)
| 3[R =X 8 - ORMO& i)

) - "Call into Cilk runtime

Helper function library to execute a
encodes the loop body. cilk for loop.

C
pseudo-
code

roru—rrormarzzeyvdouble fFrest. ,
const double *restrict X, int n) {
Etruct args t args¥ { Y, X, n };
cilkrts cilk for(normalize helper, args, 0, n);

}

vo¥ normalize_helper(spovct snsc + snce dnt SN (0
double *v = args.Y; | The compiler can’t move

double *X = args.X; norm out of the loop.
LR RE=darg s Jink

Y[i] ="X[1i]*/ NGNSt
} , ., 81

N

© 2008-2018 by the" M

Performance of Parallel Normalize

__attribute__ ((const)) The norm function
double norm(const double *X¥ \v35 also parallelized.

void normalize(double *restrict Y,
const double *restrict X,

int n) j, ~
cilk_for (int 1 = @; Terrible work efficiency!
Y[i] = X[1] /norm T /T. = 0.312/2600

} ~
L 1/8600

Jest: Random vector of n=64M elements
Machine: AWS c4.8xlarge Compiler: GCC 6.2
Running time of serial code: Tc = 0.312 s

| 8—core running time. T,g = 180.657 s

[—core running time: T; = 2600.287 s

J

© 2008-2018 by the MIT 6.172 Lecturers 82

Tapir embeds fork-join parallelism into LLVM’s IR.

Preprocessed \C
TapP
C source source
Collision Clang pre- Collision Clang code Collision
World.c processor World.i generator World.1ll1l

Mreh 4 4
With minimal code
chantges., LL_I_/M _Can Optimized bl
optimize Tapir. . Assembly
y }DLM’I%W
LLVM Collision LLVM code Collision
optimizer World.1l generator World.s
7 4

© 2008-2018 by the MIT 6.172 Lecturers 83

Unsafe Optimizations

Problem: There are many examples of
optimizations on serial code that cannot be
safely applied to parallel code [mp9o].

Cilk code
void foo(int n) {
cilk for (intd = 9; i < n; ++i) Incorrectly
bar(5*i); optimized
} Cilk code
. ™ void foo(int n) {
Unleashing LLVM int tmp = 0;
on para”el Cilk_'For' (lnt ol — @; 1< n, ++i) {
: bar(tmp);
programs requires AL o
some care.

© 2008-2018 by the MIT 6.172 Lecturers 84

A Tapir CFG

int foo(int n) {
TR X, Y

y = baz(n);
cilk sync;
FETUIRX = Vs

X = cilk_spawn bar(n);

4

Tapir uses an
asymmetric
representation of

the parallel tasks
in the CFG.

Tapir adds three
constructs to LLVM’s IR:

detach, reattach, and
sync.

Tapir control-flow graph
entry

(Conﬂnuaﬂon]
X = allocayy

detach det, cont

det

cont
X0 = @bar()
store x, x©O y = @baz()
reattach cont sync exit

[Spawned task]

N— "’,,—*"

© 2008-2018 by the MIT 6.172 Lecturers

exit

85

Serial Elision

Tapir CFG This asymmetry models
entry the program’s serial
x_= alloca() elision.
detach det, cont
det
X0 = @bar() cont v CFG of serial elision
store x, x© y = @baz() entry
reattach cont sync exit Y = elieee()
/ br det
.. | x1 = load x det /
ex1it AED sl o X0 = @ban() cont
: t , XO = (@ba
" If the program contains no ,Pozce)n)t(: ﬁ,« egitz()
determinacy races, then it ~__ /
is semantically equivalent 1 toad <
_ toits serial projection. P exit R

© 2008-2018 by the MIT 6.172 Lecturers

86

Parallel Loops in Tapir

In Tapir, parallel loops look similar to serial
loops, with some differences due to parallelism.

Tapir normalize CFG

Serial normalize CFG br (@ < n), :eade'“: exit
br (6 < n), loop, exit io = ¢([9,entry],[11,1atch])
l detach body, latch
-~
i = d([@,entry],[il,loop]) norm@ = norm(X, n)
normo =-norm(X,_ﬁs Y[i0] = X[i@] / normo
Y[i@] = X[i@] / norm@ reattach latch
il = i@ + 1 "N
br (i1 < n), loop, exit il =i + 1
br (il < n), header, sync
1 '
return sync exit
\
© 2008-2018 by the MIT 6.172 Lecturers &7 return

LLVM can reason about a Tapir CFG as a relatively minor

change to the CFG of the serial elision.

- Many standard compiler analyses required no
changes.

« Memory analysis required a minor change to handle
Tapir’s constructs (~450 lines of code).

- Some optimizations, e.g., code hoisting and tail-
recursion elimination, required some changes to work
on Tapir CFG’s.

In total, implementing Tapir involved adding or
modifying ~6000 lines of LLVM’s 4-million-line
codebase.

© 2008-2018 by the MIT 6.172 Lecturers 88

Parallelize Normalize with Tapir

__attribute_ ((const))
double norm(const double *X, int n);

void normalize(double *restrict Y,
const double *restrict X,
T).

@il o (TE S = 0T
AL T R Y nor'm(K(GOOd work efficiency:}

} Ts/T] — 97%

Jest: Random vector of n=64M elements
Machine: AWS c4.8xlarge Compi/er: Tapir/LLVM
Running time of serial code: T¢ = 0.312 s

[—-core running time.: T; = 0.321 s

| 8—core running time. T;g = 0.081 s

© 2008-2018 by the MIT 6.172 Lecturers 89

Work-Efficiency Improvement

/ R
Same as Tapir/LLVM except that
Cilk constructs are compiled early.

\ /

Reference ¥ Tapir/LLVM
Ideal 0 -
efficiency - . . ’ ¢ ’ . g . * ® 4 * of
0.9 3
4
0.8 ¢
T o o
- 07
I 06 o
0.5
04
R A A A R) B O B O R W R R O O BN B NP IO N
CEFFT P FFS T E Ve F IS s S e
N .) S Q <
ST S TEFT T EE T
AR © ~

Tapir/LLVM doesn’t fix everything,
but it helps parallel programs

achieve good work efficiency.
N /

90

© 2008-2018 by the MIT 6.172 Lecturers

SPEED |
LIMIT

KPER ORDER OF 6.172}

© 2008-2018 by the MIT 6.172 Lecturers o

Example: OpenMP Normalize

double norm(const double *

it CEtbiite” WG cCis1hL) The norm function
was also parallelized.

|

void normalize(double *restrict Y,

" Why dowe) int n) {

const double *restrict X,

get this agma omp parallel for

(e DA 7 L S [S)
\performance?J,[i] o i e
}

Good work
efficiency

without Tapir?
\ /

Jest. Random vector of n=64M elements
Machine: AWS c4.8xlarge Clompiler: GCC 6.2
Running time of serial codeJs = 0.312 s

| —core running time.: T; = 0.329 s
| 8-core running time. T;g = 0.205 s

© 2008-2018 by the MIT 6.172 Lecturers 92

C Parallel

speedup is
not great.

N

~

/

GCC Compiling OpenMP Code

OpenMP void normalize(double *restrict Y,

code const double *restrict X, int n) {
#pragma omp parallel for
£ 1V T B. 5 ¢ py e

The helper function’s A
loop on n/P iterations
can be optimized.

CICT LU T I\) == N AL / L

4 .

Each processor invokes

this helper method on
n/P iterations.

col rm(X

p0lq *
__kmpc_fork_call(omp_outlined, 5 K,

}

void omp outlined(int n, double *restrict V),
const double *restrict X) {

In® 1ocCals n®S=sn; doublies"wlocal ly =EnYey Hlocal™X =" X;
__kmpc_for_static init(&local n, &local Y, &local X);
double tmp = norm(X, n);
for (int 1 = @; i < local n; ++i)

local Y[i] = local X[i] / tmp;
__kmpc_for_static fini(); Z;;7

93

© 2008-201

Analysis of OpenMP Normalize

- (

Omp_OUtliHEd on n/P uble *restri

N\ .
Each processor invokes [ot v The norm function
> | performs ©(n) wor

<.

X iterations. outlined, n, Y, X);

T
void omp outlined(int n, double *resteict VY,

r

const™double *—=t-=i-t

int local n =t double *loca The variable local n IS
kmpc for $fatic init(&local approximately n/P.

double tmp = norm(X, n);
for (int 1 = 0; i < local n; ++1)
leoealy Y& 5= #loca X [T | #*tmp*

e fanpc *forSstaii c *Rini@);

¥

y

Work of omp_outlined: T(n) =

Total work on P processors: T(n) =

© 2008-2018 by the MIT 6.172 Lecturers 94

O(n)
O(Pn)

Summary of OpenMP Normalize

__attribute_ ((const))
double norm(const double *X, int n);

void normalize(double *restrict VY,
const double *restrict X,
T
#pragma omp parallel for
FORMEIMET 1= 0,8 % . XNk ++i48)
N1 = X T A = sralRm (O -2 P 5

) y

Work on P

Processors:
T(n) = O(Pn)

- This code is only work efficient on 1

pProcessor.

« This code can never achieve more than

minimal parallel speedup.

© 2008-2018 by the MIT 6.172 Lecturers 9

Takeaways

The work-first principle
a)

Optimize for ordinary serial
execution, at the expense of some
additional computation in steals.

U)

Two more takeaways:

- Think about the performance model for your
program.

- Know what your parallel runtime system is
doing.

© 2008-2018 by the MIT 6.172 Lecturers %

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

97

