
Team Five Paper 

From Self Flagellation to Michael Craig: A Robot's Journey 

The Bot 

We named our robot Michael Craig to replace our lost teammate. Unfortunately, Michael 
did not perform up to our lofty expectations from the start of the course. Perhaps a 
stronger effort in the first two weeks of the course would have allowed us to finish the 
mechanical systems earlier and to make more progress on the software. Then again, 
perhaps not. In the end, Michael wandered in what appeared to be an aimless manner, but 
managed to score three points. It was lucky that we did score, because we chose to tempt 
fate and left the completion of checkpoint two until contest day. But we're gambling men, 
and such a situation was only to be expected. 

Overall Strategy - Keepin' it Simple 

There were a couple of things that we knew, from the start, that we didn't want to do in the 
contest. We didn't want to do tasks that would spend time and processing power 



generating extra data. This meant metric mapping was out. The thought was that most of 
the details of the data we generated would simply be thrown away. Instead, we thought 
that the more abstract topological mapping was a better choice. 

Second, we didn't want to design our robot in such a way as to require accurate movement 
and positioning. This meant that an arm was out. We wanted our robot to thrive in the 
error-filled environment that was sure to ensue. A large mouth that would allow us to 
drive in the general direction of balls appealed to us. A precision instrument to grab and 
lift balls did not (though the two arms that we did see were really cool). 

Mechanical Systems 

Frame 

We decided to build the robot almost entirely out of sheet metal. The main reason for this 
was that it would look cool. Almost all of the sheet metal that we used was purchased 
from CMS, as MASLab did not have enough for it to be used for structural purposes. John 
acquired high-bond double-sided tape from McMaster to hold the different pieces 
together. It worked well in long strips, but was not so great for small bonds. 

Paddle Wheel 



Our robot divided the task of delivering a ball from the playing field to a field goal 
between three main mechanical systems. The first was a paddle wheel which was slightly 
recessed in the frame of the robot. We recessed the paddle wheel in order to keep our 
camera as close to the ground as possible. To clear the top of the wheel, the camera would 
have had to be about 5-6 inches high. By recessing the wheel we were able to get it to 
only about 3 inches off the ground. We decided to use a paddle wheel rather than simply 
driving over the balls, because we decided that it would make it much easier to feed balls 
into a lifting mechanism if they were on an incline. In order to accomplish this we needed 
to push them up a small ramp. 

We constructed the paddle wheel from small strips of sheet metal rotating around a 
section of brass tubing. We drove it with a high torque motor, which in retrospect was 
overkill. One problem that we foresaw was that at certain angles the wheel would push 
balls straight into the ground. We spent a lot of time worrying about this, but it turned out 
not to be a problem at all. Since we were always driving forward over balls, they never 
once got stuck during testing or the contest. 

Screw 

The second mechanical system was an archimedean screw. We used a single screw which 
trapped balls against two bars. The shaft was aluminum with 1 inch brass supports. The 



helix was constructed using surgical tubing from Home Depot. We drilled holes in the 
tubing and superglued it to the brass supports. The screw was also driven by a high-torque 
motor. It was able to elevate four balls at once. 

Aqueduct and Trapdoor 

Once again, aesthetics and bad-assness played a major role in our design decisions. Rather 
than make a simple tilted container for the balls, we decided that it would look much 
better to have a long, winding aqueduct on top of the robot. The initial idea was to use 
PVC piping, but John decided that bending yet more sheet metal to his will would be even 
better. 



The trapdoor was the result of running out of sensor points. Ideally we would have used a 
servo to open and close the door. Instead, we had a mechanical system that was 
improvised on the last day before impounding. It was a one-shot affair, with a spring 
holding the door closed and a bar acting as a switch. When the bar hit a field goal upright 
on either side, it pulled the trap door open. 



We didn't use many sensors, because we had used most of our points on the two high 
torque motors for our capture and elevation systems. We had two short range IR sensors 
on the sides of our robot. These pointed forward and were mainly used for obstacle 
avoidance. We also used optical encoders to help with straight driving. 

Software Design 

Robot Control 

We used optical encoders to dynamically adjust the speed of each wheel when moving 
forward and backward. We decided that a PID controller was not necessary since we 
ultimately could drive straight without it. For turning, we simply used the gyro. This was 
fairly accurate for angles between 30 and 90 degrees. It was not accurate for small angles 
except on very low speeds. This was because we could only access a gyro reading 20 
times a second. For medium to high speeds, this made the error on angles under 20 
degrees prohibitive. 

Robot control turned out to be one of the biggest surprises of MASLab. We realized it 
would not be simple, but it turned out to take up an enormous amount of our time. Simply 
driving straight and turning a requested angle were not simple tasks. The motors never 
behaved how we thought they would. We inititially did not want to use encoders, but soon 

Sensors 



realized that if we did not, we would not be able to rely on the robot going where we 
wanted it to. A pleasant surprise was that they worked really well, and we never needed to 
fiddle with them. 

We decided fairly late in the course that we would use current sense to detect bumps. This 
introduced a whole new set of problems. We had a set of constants calibrated for each 
speed, which indicated when the current was a result of normal driving and when it meant 
that the robot had hit something. Every time we made a major change to the structure 
(which was all the time during the last week) we had to fix these constants. In short, 
driving was a major headache and seriously impeded our progress in other areas. 

Image Processing 

The image processor on the robot ran at a peak of 12 frames per second. The final speed 
was lower than this as we started scrambling during the last week and never got around to 
optimizing. Barcode recognition proved to be the only non-trivial task in this area (in fact, 
it was very far from trivial). We ended up using the low-resolution image to define the 
area of a barcode, and then taking a high-resolution picture and analyzing only that area. 
A problem we ran into was that if we were moving, the high-res picture would be slightly 
different than the low-res. The only way to fix this was to stop when looking at a barcode. 
We didn't want to do this, but we had to, as correct barcode recognition was absolutely 
essential to our mapping system. 

Another feature of our image processing was that we were able to estimate the distance 
and angle to an object based on its size and position in the picture. The estimates were 
accurate enough to get balls and drive near barcodes. 

One thing our image processing never managed to do was to determine what the 
orienation of a goal was. This didn't turn out to be a problem as we never got close to 
scoring a field goal. 

Mapping 

We decided against metric mapping. In fact, we never had any desire to do anything close. 
Our biggest thought on metric mapping was that we would have to pay an enormous 
amount of time and processing power to generate and upkeep a set of specific data. The 
problem was that in the end, this data didn't seem all that useful. Instead, we sought to 
create a topological map of the playing field. We would note the different barcodes and 
connect them using breadth-first search. We had plans to note the ball density around each 
barcode, but this went on the backburner. 

We ended up with accurate mapping that correctly determined the barcodes present and a 



good portion of the links. However, due to lack of testing time, we never used our maps. 
We were concerned about our ability to reliably travel through more than one link. 
Because we didn't test, we also weren't sure it would save time over random wandering. 

Scoring 

Our initial plan for scoring was to use our map to ensure that we travelled to all of the 
rooms on the field. We would weight the different barcodes on the map based on their: 

● ball density 
● proximity to robot 
● proximity to a goal 

The third value would be weighted higher as the round progressed. We would use this to 
determine which barcode we should travel to next (and the current room would be 
included in this computation). At a certain point, we would drop everything, go to a goal, 
and try to score. 

This all went out the window when we realized we were out of time. We ended up 
wandering randomly. With another 1-2 days, we could have figured out some basic uses 
for our topological map. With another 3-4, we could have generated this complex system 
to compute the value of each of our options at any given point. 

Suggestions for Future Teams 

Driving Good is Hard 

Do not underestimate the problems you will have in this area. Get encoders, even if you 
are not doing metric mapping and don't care where on the field your robot is at any given 
time. You will care about driving straight at some point, we guarantee it. That is all we 
used our encoders for, and they were invaluable. 

Be prepared to spend tons of time on this. 

Get Your Mechanical Stuff Done 

One of our biggest problems was that we couldn't do testing. Our pegbot had issues that 
we resolved with the final design, such as wheels sticking way out of the frame and 
getting stuck on stuff. As a result, we couldn't do useful testing of our software for much 
of the time we had. We finished our mechanical systems about an hour before 
impounding. We tried to test as much as we could before then, but it wasn't nearly as 
effective as it could have been. 



Having a near final robot by the end of the second week would have been real nice. 

Small and Simple 

Our robot, though it performed all of its intended functions well, was too cumbersome and 
too slow. If given another chance, we would have ignored field goals and gone for a short, 
light, fast robot. To succeed in this contest, one doesn't need to do it all. Just make sure 
you do what you do well. Here's an example of a robot that didn't do anything well. Our 
prototype, lovingly dubbed "Sh*tBot v_1.0". Notice the distinct lack of front wheels, and 
the excess amount of masking tape, often serving structural function. 



Take Advantage of the Staff 

Yes, this is exactly what it sounds like. And in addition, the staff is amazingly helpful and 
friendly. Don't hesitate to ask them for help when you get stuck. 


	Local Disk
	PhpWiki - Team Five Paper


