Mapping and Navigation

January 6 ${ }^{\text {th }}, 2005$

Edwin Olson

Why build a map?

- Time!
- Playing field is big, robot is slow
- Driving around perimeter takes a minute!
- Scoring takes time... often ~ 20 seconds to "line up" to a mouse hole.
- Exploration round gives advantage to robots that can map

Attack Plan

- Motivation: why build a map?
- Terminology, basic concepts
- Mapping approaches
- Metrical
- State Estimation
- Occupancy Grids
- Topological
- Data Association
- Hints and Tips

What is a feature?

- An object/structure in the environment that we will represent in our map
- Something that we can observe multiple times, from different locations

Bunker Hill Monument
(Image courtesy of H. Oestreich and stock.xchng)

What is an Observation?

- Where do we get observations from?
\square Camera
- Range/bearing to ticks and landmarks
\square Corners detected from camera, range finders
- For now, let's assume we get these observations plus
 some noise estimate.

Data Association

- The problem of recognizing that an object you see now is the same one you saw before
\square Hard for simple features (points, lines)
\square Easy for "high-fidelity" features (barcodes, bunker hill monuments)
- With perfect data association, most mapping problems become "easy"

Attack Plan

- Motivation: why build a map?
- Terminology, basic concepts
- Mapping approaches
- Metrical
- State Estimation
- Occupancy Grids
- Topological
- Data Association
- Hints and Tips

Metrical Maps

- Try to estimate actual locations of features and robot
- "The robot is at $(5,3)$ and feature 1 is at $(2,2)$ "
\square Both "occupancy grid" and discrete feature approaches.
- Relatively hard to build
- Much more complete representation of the world

Metrical Maps

- State Estimation
\square Estimate discrete quantities: "If we fit a line to the wall, what are its parameters $y=m x+b$?"
\square Often use probabilistic machinery, Kalman filters
- Occupancy Grid
\square Discretize the world. "I don't know what a wall is, but grids 43, 44, and 45 are impassable."

Bayesian Estimation

- Represent unknowns with probability densities
- Often, we assume the densities are Gaussian

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / \sigma^{2}}
$$

- Or we represent arbitrary densities with particles
- We won't cover this today

Bayesian Data Fusion

- Example: Estimating where Jill is standing:
- Alice says: $x=2$
- We think $\sigma^{2}=2$; she wears thick glasses
- Bob says: $x=0$
- We think $\sigma^{2}=1$; he's pretty reliable
- How do we combine these
 measurements?

Simple Kalman Filter

- Answer: algebra (and a little calculus)!
- Compute mean by finding maxima of the log probability of the product $P_{A} P_{B}$.
- Variance is messy; consider case when $P_{A}=P_{B}=N(0,1)$
- Try deriving these equations at home!

$$
\frac{1}{\sigma^{2}}=\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}
$$

$$
\mu=\frac{\mu_{A}{\sigma_{B}}^{2}+\mu_{B} \sigma_{A}{ }^{2}}{{\sigma_{A}{ }^{2}+\sigma_{B}{ }^{2}}^{2}}
$$

Kalman Filter Example

- We now think Jill is at:

$$
\begin{aligned}
& -x=0.66 \\
& -\sigma^{2}=0.66
\end{aligned}
$$

Kalman Filter: Properties

■ You incorporate sensor observations one at a time.

- Each successive observation is the same amount of work (in terms of CPU).
- Yet, the final estimate is the global optimal solution.

The Kalman Filter is an optimal, recursive estimator.

Kalman Filter: Properties

Observations always reduce the uncertainty.

Kalman Filter

- Now Jill steps forward one step
- We think one of Jill's steps is about 1 meter, $\sigma^{2}=0.5$
- We estimate her position:
$-X=X_{\text {before }}+X_{\text {change }}$
$-\sigma^{2}=\sigma_{\text {before }}{ }^{2}+\sigma_{\text {change }}{ }^{2}$
- Uncertainty increases

State Vector

- We're going to estimate robot location and orientation ($\mathrm{x}_{\mathrm{r}}, \mathrm{x}_{\mathrm{y}}, \mathrm{x}_{\mathrm{t}}$), and feature locations (f_{nx}, $f_{n y}$).

$$
x=\left[x_{r} x_{y} x_{t} f_{1 x} f_{1 y} f_{2 x} f_{2 y} \ldots f_{n x} f_{n y}\right]^{\top}
$$

- We could try to estimate each of these variables independently
\square But they're correlated!

State Correlation/Covariance

- We observe features relative to the robot's current position
\square Therefore, feature location estimates covary (or correlate) with robot pose.
- Why do we care?
\square We need to track covariance so we can correctly propagate new information:
\square Re-observing one feature gives us information about robot position, and therefore also all other features.

Correlation/Covariance

- In multidimensional Gaussian problems, equal-probability contours are ellipsoids.
- Shoe size doesn't affect grades:
$\mathrm{P}($ grade, shoesize $)=\mathrm{P}$ (grade) P (shoesize)
- Studying helps grades:

P(grade,studytime)!=P(grade)P(studytime)
\square We must consider $\mathrm{P}(\mathrm{x}, \mathrm{y})$ jointly, respecting the correlation!
\square If I tell you the grade, you learn something about study time.

Kalman Filters and Multi-Gaussians

- We use a Kalman filter to estimate the whole state vector jointly.

$$
x=\left[\begin{array}{llll}
x_{r} & x_{y} & x_{t} & f_{1 x}
\end{array} f_{1 y} f_{2 x} f_{2 y} \ldots f_{n x} f_{n y}\right]^{\top}
$$

- State vector has N elements.
- We don't have a scalar variance σ^{2}, we have NxN covariance matrix Σ.
\square Element (i,j) tells us how the uncertainties in feature i and j are related.

Kalman Filters and Multi-Gaussians

- Kalman equations tell us how to incorporate observations
\square Propagating effects due to correlation
- Kalman equations tell us how to add new uncertainty due to robot moving
\square We choose a Gaussian noise model for this too.

System Equations (EKF)

- Consider range/bearing measurements, differentially driven robot
- Let $\mathrm{x}_{\mathrm{k}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}, \mathrm{u}_{\mathrm{k}-1}, \mathrm{w}_{\mathrm{k}-1}\right) \quad \mathrm{u}=$ control inputs, $\mathrm{w}=$ noise
- Let $\mathrm{z}_{\mathrm{k}}=\mathrm{h}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}\right)$
$\mathrm{v}=$ noise

$$
\begin{gathered}
f=\left(\begin{array}{l}
x^{\prime}=x+\left(u_{d}+w_{d}\right) \cos \left(\theta+w_{\theta}\right) \\
y^{\prime}=y+\left(u_{d}+w_{d}\right) \sin \left(\theta+w_{\theta}\right) \\
\theta^{\prime}=\theta+u_{\theta}+w_{\theta}
\end{array}\right) \\
h=\binom{z_{d}=\left[\left(x_{f}-x_{r}\right)^{2}+\left(y_{f}-y_{r}\right)^{2}\right]^{1 / 2}+v_{d}}{z_{\theta}=\arctan 2\left(y_{f}-y_{r}, x_{f}-x_{r}\right)-x_{\theta}+v_{\theta}}
\end{gathered}
$$

EKF Update Equations

- Time update:
- $x^{\prime}=f(x, u, 0)$
- $P=A P A^{\top}+W Q W^{\top}$
- Observation
$-K=P H^{\top}\left(H P H^{\top}+V R V^{\top}\right)^{-1}$
- $x^{\prime}=x+K(z-h(x, 0))$
- $\mathrm{P}=(\mathrm{I}-\mathrm{KH}) \mathrm{P}$

$$
\begin{gathered}
f=\left(\begin{array}{l}
x^{\prime}=x+\left(u_{d}+w_{d}\right) \cos \left(\theta+w_{\theta}\right) \\
y^{\prime}=y+\left(u_{d}+w_{d}\right) \sin \left(\theta+w_{\theta}\right) \\
\theta^{\prime}=\theta+u_{\theta}+w_{\theta}
\end{array}\right) \\
h=\binom{z_{d}=\left[\left(x_{f}-x_{r}\right)^{2}+\left(y_{f}-y_{r}\right)^{2}\right]^{1 / 2}+v_{d}}{z_{\theta}=\arctan 2\left(y_{f}-y_{r}, x_{f}-x_{r}\right)-x_{\theta}+v_{\theta}}
\end{gathered}
$$

- P is your covariance matrix
- They look scary, but once you compute your Jacobians, it just works!
- A=df/dx W=df/dw $\quad H=d h / d x \quad V=d h / d v$
- Staff can help... (It's easy except for the atan!)

EKF Jacobians

$$
\begin{aligned}
& f=\left(\begin{array}{l}
x^{\prime}=x+\left(u_{d}+w_{d}\right) \cos \left(\theta+w_{\theta}\right) \\
y^{\prime}=y+\left(u_{d}+w_{d}\right) \sin \left(\theta+w_{\theta}\right) \\
\theta^{\prime}=\theta+u_{\theta}+w_{\theta} \\
x_{1}{ }^{\prime}=x_{1} \\
y_{1}{ }^{\prime}=y_{1}
\end{array}\right) \begin{array}{l}
d=\left[\left(x_{f}-x_{r}\right)^{2}+\left(y_{f}-y_{r}\right)^{2}\right]^{1 / 2} \\
d_{x}=x_{f}-x_{r} \\
d_{y}=y_{f}-y_{r}
\end{array} \\
& A=\left|\begin{array}{ccccc}
1 & 0 & -u_{d} \sin (\theta) & 0 & 0 \\
0 & 1 & u_{d} \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right| \quad W=\left|\begin{array}{cc}
\cos (\theta) & -u_{d} \sin (\theta) \\
\sin (\theta) & u_{d} \cos (\theta) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right|
\end{aligned}
$$

EKF Jacobians

$$
h=\binom{z_{d}=\left[\left(x_{f}-x_{r}\right)^{2}+\left(y_{f}-y_{r}\right)^{2}\right]^{1 / 2}+v_{d}}{z_{\theta}=\arctan 2\left(y_{f}-y_{r}, x_{f}-x_{r}\right)-x_{\theta}+v_{\theta}}
$$

$$
\lambda=1 /\left(1+\left(d_{y} / d_{x}\right)^{2}\right.
$$

$$
H=\left|\begin{array}{ccccc}
-d_{x} / d & -d_{y} / d & 0 & d_{x} / d & d_{y} / d \\
\lambda d_{y} / d_{x}{ }^{2} & -\lambda / d_{x} & -1 & -\lambda d_{y} / d_{x}{ }^{2} & \lambda / d_{x}
\end{array}\right| \quad V R V^{T}=\left|\begin{array}{cc}
\sigma_{v_{d}}{ }^{2} & 0 \\
0 & \sigma_{v_{e}}{ }^{2}
\end{array}\right|
$$

Kalman Filter: Properties

- In the limit, features become highly correlated
\square Because observing one feature gives information about other features
- Kalman filter computes the posterior pose, but not the posterior trajectory.
\square If you want to know the path that the robot traveled, you have to make an extra "backwards" pass.

Kalman Filter: a movie

Kalman Filters' Nemesis

- With N features, update time is $\mathrm{O}\left(\mathrm{N}^{2}\right)$!
- For Maslab, N is small. Who cares?
- In the "real world", N can be 10^{6}.
- Current research: lowercost mapping methods

Non-Bayesian Map Building

Attack Plan

- Motivation: why build a map?
- Terminology, basic concepts
- Mapping approaches
- Metrical
- State Estimation
- Occupancy Grids
- Topological
- Data Association
- Hints and Tips

Occupancy Grids

- Another way of mapping:
- Divide the world into a grid
- Each grid records whether there's something there or not
- Use current robot position estimate to fill in squares according to sensor observations

Occupancy Grids

- Easy to generate, hard to maintain accuracy
- Basically impossible to "undo" mistakes
- Occupancy grid resolution limited by the robot's position uncertainty
- Keep dead-reckoning error as small as possible
- When too much error has accumulated, save the map and start over. Use older maps for reference?

Attack Plan

- Motivation: why build a map?
- Terminology, basic concepts
- Mapping approaches
- Metrical
- State Estimation
- Occupancy Grids
- Topological
- Data Association
- Hints and Tips

Topological Maps

- Try to estimate how locations are related
- "There's an easy (straight) path between feature 1 and 2 "
- Easy to build, easy to plan paths
- Only a partial representation of the world

\square Resulting paths are suboptimal

Topological Maps

- Much easier than this metrical map stuff.
- Don't even try to keep track of where features are. Only worry about connectivity.

Topological Map Example

- Note that the way we draw (where we draw the nodes) does not contain information.

Topological Map-Building Algorithm

- Until exploration round ends:
\square Explore until we find a previously unseen barcode
\square Travel to the barcode
\square Perform a 360 degree scan, noting the barcodes, balls, and goals which are visible.
\square Build a tree
- Nodes = barcode features
- Edges connect features which are "adjacent"
- Edge weight is distance

Topological Maps: Planning

- Graph is easy to do process!
- If we're lost, go to nearest landmark.
\square Nodes form a "highway"
- Can find "nearest" goal, find areas of high ball density
$\square A^{*}$ Search

Attack Plan

- Motivation: why build a map?
- Terminology, basic concepts
- Mapping approaches
- Metrical
- State Estimation
- Occupancy Grids
- Topological
- Data Association
- Hints and Tips

Data Association

- If we can't tell when we're reobserving a feature, we don't learn anything!
\square We need to observe the same feature twice to generate a constraint

Data Association: Bar Codes

- Trivial!
- The Bar Codes have unique IDs; read the ID.

Data Association: Tick Marks

- The blue tick marks can be used as features too.
\square You only need to reobserve the same feature twice to
 benefit!
\square If you can track them over short intervals, you can use them to improve your deadreckoning.

Data Association: Tick Marks

- Ideal situation:
\square Lots of tick marks, randomly arranged
\square Good position estimates on all tick marks
- Then we search for a rigid-bodytransformation that best aligns the points.

Data Association: Tick Marks

- Find a rotation that aligns the most tick marks...
\square Gives you data association for matched ticks
\square Gives you rigid body transform for the robot!

Attack Plan

- Motivation: why build a map?
- Terminology, basic concepts
- Mapping approaches
- Metrical
- State Estimation
- Occupancy Grids
- Topological
- Data Association
- Hints and Tips

Using the exploration round

- Contest day:

1. During exploration round, build a map.
2. Write map to a file.
3. During scoring round, reload the map.
4. Score lots of points.

- Use two separate applications for explore/score rounds.
- Saving state to a file will ease testing:
- You can test your scoring code without having to reexplore
- You can hand-tweak the state file to create new test conditions or troubleshoot.

Debugging map-building algorithms

- You can't debug what you can't see.
- Produce a visualization of the map!
\square Metrical map: easy to draw
\square Topological map: draw the graph (using graphviz/dot?)
\square Display the graph via BotClient
- Write movement/sensor observations to a file to test mapping independently (and off-line)

Course Announcements

- Gyros:
\square Forgot to mention that your first gyro costs ZERO sensor points.
\square Gyro mounting issues: axis of rotation
- Lab checkoffs
\square Only a couple checkoffs yesterday

Today's Lab Activities

- No structured activities today
- Work towards tomorrow's check-off:

1. Robot placed in playfield
2. Find and approach a red ball.
3. Stop.

- Keep it simple!
$\square \quad$ Random walks are fine!
$\square \quad$ Status messages must be displayed on OrcPad or BotClient

