Optional: Building a processor from scratch

In this assignment we are going build a computer processor from the ground up, starting with
transistors, and ending with a small but powerful processor. The purpose of this assignment is
to make you more familiar with the notion of logical circuits and the boolean functions which
they implement. It also illustrates the principle of modularity. Starting with very simple
transistor-level circuits, we will work our way up to a complete processor. At each level of the
processor design, we will use the circuits that we have designed at the lower levels as black
boxes, ignoring their implementation details.

To aid in the clarity of your solution as well as the clarity of your thinking, you should
design your circuits modularly. Once you have shown how to build a piece of circuitry (such
as an adder) it is never again necessary to draw the details of its implementation: simply
use an appropriately labelled box to represent it. Similarly, you may wish to bundle parallel
bunches of wires together into a single appropriately labelled “n-bit wide” wire. With these
techniques, you should be able to describe very complicated circuits with very simple and
elegant circuit diagrams.

Note: This is an optional assignment. It was designed to help you understand the internal
nature of a computer — an important task for engineers and computer scientists alike.

Nothing but NAND

The basic building block of our computer will be a two-input NAND gate. The truth table for
a two-input NAND gate is shown below. The output z is 1 if and only if at least one of the
two inputs x and y is 0. (Which is the same as saying that the two outputs are not both 1.)

:x-y

— _= O OoOlR
— O~ Ol
[S S SR Y

As we shall see below, any other gate can be constructed using nothing but NAND gates.
Because of this, we say that NAND gates are complete. It is interesting to note that not all
gates have this property: for example, AND gates are incomplete—that is, there is no way to
construct all the other gates using only AND gates.

A NAND gate is drawn schematically as shown below.

* O— z
y_

For this assignment, the NAND gate is the lowest level you ever need to worry about.
However, for the curious we will include a little information about how gates are actually
built from transistors. In particular, we will use Complementary Metal Oxide Semiconductor
(CMOS) transistors, one of the several different types available.

A NAND gate can be implemented in CMOS using four transistors, as shown below. The
horizontal line at the very top of the figure represents a high voltage value (Vy,), say 5 volts,
while the three horizontal lines at the bottom of the figure represent the ground voltage, 0

volts. The high voltage value represents a binary 1, while the low voltage value represents 0.
The inputs x and y are each connected to the gates of two transistors. A transistor is basically
a door. Each of the bottom two transistors in this figure is “open” when the voltage on its
gate is high, and “closed” when it is low. Each of the top transistors is open when the voltage
on its gate is low, and closed when it is high. When either of = or y is 0, the path from the
ground to the output z is closed, but at least one path from V ; to 2z is open, so z takes on
the high voltage. When both x and y are one, there is no path from Vy,; to z, but there is a
path from the ground to z, so z takes on the low voltage.

vdd

Problem 0 (5 points):

Using a NAND gate as your basic building block, show how to construct circuits that perform
the following functions: NOT, AND, OR, and XOR. You should not draw any transistors—
begin with the NAND gate schematic. You may design the circuits in any order that you want,
and once you have designed a circuit, you may use it in the construction of other circuits (using
the appropriate schematic). The truth tables for these functions, along with their schematics
are shown below.

1. NOT gate
=T
X Z

2. AND gate

r—t»—too‘&
O O~ W

y_

— -0 O8
=R e @) N

—_ o O ol
I
8
<
x
N

3. OR gate

Il
8
+
<

— -0 O8
= R e @) N

— == O
< X
N

4. XOR gate

I
8
S
<

s D

——_ 0 O8
— O~ O

O = = Ol

Building an adder
Problem 1 (8 points):

Now that you have designed a collection of useful gates, you can use them to construct more
sophisticated circuits. Using your collection of gates, draw a circuit that implements 4-bit
grade school addition, which should be able to do calculations like 0110 + 0100 = 1010. You
do not need to deal with overflow (for example, 0110 4+ 1100 = 0010 is OK).

You should proceed by first constructing a 1-bit adder (that takes as input two bits and
outputs a sum bit and a carry bit: e.g., adding 0 and 1 produces sum = 1 and carry = 0,
where as 1 and 1 produces sum = 0 and carry = 1). Then, show how to combine 1-bit adders
to construct a 4-bit adder.

Multiplexers and Demultiplexers

Two types of circuits will come in very handy as we design our processor: multiplexers and
demultiplexers. Intuitively, a multiplexer (mux) takes a binary number n and selects the n'*
one of its inputs to forward on. A demultiplexer (demux) takes a number n and sends its
input out on the n** output line.

X00 | = y00

x01 | ——= yo1

x10 | = y02

x11 - — y03

E—
R ———

Figure 1: At left, a four-way one-bit mux. At right, a four-way one-bit demux.

The schematic for a 4-way 1-bit mux is shown in Figure 1 (Left).

It has four data inputs, xgg, Zo1, 10, €11, two control inputs ag, a;, and one output, y. The
value of y is equal to the input specified by the binary number agay, ie., ¥ = T45a,- As an
example, if xgg = 1,291 = 1,210 = 0,217 = 1 and aga; = 10, then y = z190 = 0. A mux is also
called a selector because the control lines select from among the possible inputs.

The schematic for a 4-way 1-bit demux is shown in Figure 1 (Right). This circuit has a
1-bit data input z, a 2-bit control input ag, a1, and 4 1-bit outputs, yoo, Yo1, Y10, Y11-

A demux works as follows. The value of x is transferred to the output line specified by aq
and aq, i.e., Ysya;, = . The value on all of the other outputs is 0. As an example, if z = 1,
and apga; = 01, then yo1 = 1 and ygo = y10 = y11 = 0. As another example, if x = 0, then
independent of the value of aga1, Yoo = Yo1 = Y10 = y11 = 0.

Problem 2a (10 points):

Using the gates that you've designed so far, design a 4-way 1-bit multiplexer.

Problem 2b (10 points):

Using the gates that you've designed so far, design a 4-way 1-bit demultiplexer.

Problem 2c (4 points):

A k-way b-bit mux is one in which each of the k-inputs is a group of b bits rather than a single
bit, and the output is a group of b-bits. There are also log, k control bits (let’s assume k is a
power of 2), and these control bits are used to select one of the k groups of b bits rather than
a single bit. A k-way b-bit demultiplexer can be defined in a similar fashion. FEzplain how
to construct a k-way b-bit multiplexer using b k-way 1-bit multiplexers (you do not actually
need to draw a circuit diagram).

Clocked circuits

The circuits that we have constructed so far use what is called combinational logic. What this
means is that whenever any of the inputs to a circuit change, that change will trickle through
the gates of the circuit all the way to the outputs of the circuit without being held up. This
is good for things like adders where we want to get the answer out the other end as quickly as
possible, but for other things it can be useful to be able to control when circuits change their
values. In the next part of the assignment, we will look at circuits where the flow of data can
be regulated through the use of clocks.

high
low

E—

time

A clock is a periodic oscillating signal, as above. The high parts indicate a value of 1, and the
low parts a value of 0. These days clocks are very fast, and can oscillate at speeds more than
2 GHz (2 billion times per second).

Here’s how the clocked NOT gate works. When clock goes high, the value at z is negated
and (if necessary) carried over to z. Even if x changes, the value at z will not change until
clock again pulses.

The schematic below indicates a clocked not gate.

clocks

Notice that a clock signal is not attached to the normal input of a gate. It should only be
attached to the clock input of the gate as in the diagram above. We can similarly construct
clocked versions of the other logic gates.

We view the two clock transition as a pulse or strobe. The input = can change anytime
before the clock pulse arrives without affecting the value of the output z. When the pulse
occurs, the value at x is sampled, and shortly thereafter, z takes on its new value (the opposite
of the value that x had before the pulse occurred, because this is a NOT gate). Notice that
a clocked NOT gate behaves differently from an unclocked NOT gate. When the input to an
unclocked NOT gate changes, the output will change soon afterwards, whether or not a pulse
occurs.

You might be wondering why we have introduced these clocks. The purpose of the clocks
is to break the computation performed by the circuit into discrete points in time. You can
think of the circuit as being in a stable state between clock pulses, i.e., the output of every
gate holds steady, as does the input to every gate. The value of the output of every clocked
gate, however, is determined by the inputs to the gate before the most recent clock pulse.
When another pulse occurs, the output of each gate takes on a new value based on the input
values that were present before the pulse.

Sequential Circuits and Feedback

As you have seen before, combinational circuits simply compute the value of their output
based on their input value at that instant. Such circuits have no “memory”. The output is
computed based on the current inputs, and anything that happened to the circuit in the past
has no effect. If the input signals are the same at two different times, the outputs at those
times will be the same.

We will now design circuits with memory. These are called sequential circuits. The output
of these circuits depends on the current as well as past inputs. Memory circuits contain
feedback loops. A feedback loop occurs when the output from a gate is connected back to
an input of the same gate—possibly through one or more other gates. Such a loop allows
previous inputs to affect current outputs, which is exactly what we want in a memory circuit.

As an example, consider the following sequential circuit :

Clock

Feedback F

Suppose that the feedback wire is initially set to 0. What would the output be in terms of
the input? To see this, let us compute the output value at specific time instants, specifically
the time instants at which the clock goes high.

If the value of the output at instant ¢ is termed as z;, then, the value on the feedback wire
signifies the output value at the previous instant, which is z;_;. Hence, the output of this gate
is given by z; = x; OR z_1, where x; is the input at time ¢ (that is, just before the clock goes
high).

As long as the feedback wire is set to 0, we get z; = x; (refer to the truth table for OR
gate). However, when the feedback wire becomes 1, the output also becomes 1, and will stay
1, irrespective of what the input value is. Hence, when the input wire becomes 1, the output
stays at 1 for all times after that. It is not hard to see that the input is acting like a turn-on
signal. The circuit has memorized that at some time instant in the past, the value of the
input was 1.

Problem 3 (5 points):
Now consider the following circuit which is a minor extension of the above.

Clock

Feedback F

Having seen the above analysis, you can now perform a similar analysis for this circuit.
What role does the second input play? Briefly describe the behavior of this circuit.

Registers

In modern processors, values that are to be used repeatedly in a calculation are stored in
structures called registers. A schematic for a 4-bit register is shown below.

i0 i1 i2 i3 i0 i1 i2 i3
Vv v

clocks — clocks — <— g
Vovov Vovov o
00 ol 02 o3 o0 ol 02 o3

Figure 2: At left, a 4-bit buffer for problem 5b. At right, a 4-bit register for problem 5c.

Problem 4a (1 point):

Using clocked NOT gates, design a clocked YES gate, also known as a buffer. The output
value should be what the input value was at the last clock pulse.

Problem 4b (3 points):

Using a combination of clocked and unclocked gates, show how to design a 4-bit buffer. The
buffer should accept a 4-bit value on its inputs i, 71, 22, i3 before a clock pulse, and it should
put that value on its outputs oy, 01, 09, 03 after the pulse.

Problem 4c (8 points):

Notice that the buffer from the previous problem only delays values for one clock cycle. A
better design would allow you to store values in the buffer as long as you wanted. This is
called a register. Create a 4-bit register by extending the buffer circuit from above so that it
accepts an extra input S (for Set). If S is 1, then the new circuit should behave exactly as
above when the clock pulses. However, if S is 0 when the clock pulses then the register should
ignore its inputs, keeping the same outputs as before the clock pulse.

Processor Design

We are now ready to complete our processor design. The processor will have the following
components.

1. 8 32-bit registers, Ry, Ry, ..., R; for holding data
2. 256 16-bit registers Py, Py, ..., Pyss for holding a program
3. a 32-bit adder

4. an 8-bit register PC that will serve as a program counter

It will turn out to be convenient to hard-wire register Ry to the value 0, and register R,
to 1.

The processor will be very simple. It will have only five types of instructions: add, negate,
load immediate, and jump if zero. (This is a Really Reduced Instruction Set Computer.) A
program consists of a sequence of instructions stored in the 256 program registers. Each of
these program registers is a 16-bit register. The 16 bits specify the type of instruction and its
operands. The first two bits of the instruction specify the instruction type. The remaining
bits are operands to the instruction. The formats of the instructions are shown below.

The add (add) instruction adds the contents of the registers specified in the R, and Ry
fields. Each of these fields consists of three bits, which can be thought of as the index of the
register R, or R,. For example, if the R, field contains 010, then, since a = 010 = 2, the
index value in the R, field specifies Ry. The result of the addition is placed into R.. You do
not need to deal with overflow. This instruction, as well as the negate and load immediate
instructions, also increments the program counter PC by 1.

01 2 3 45 6 7 8 9 1011 12 13 14 15

Rc = Ra+Rb;
pc=pc+1: |0 O Ra Rb Rc |0 0 00O

The negate (neg) instruction replaces R, with —R,, using the two’s complement represen-
tation. If you are unfamiliar with two’s complement representation, see the notes at the end
of this assignment. Again, you do not need to deal with overflow.

01 2 3 45 6 7 8 9 10 11 12 13 14 15

Ra = —-Ra;
PC:PC+1;01 Ra O 0 OO OOO O OOTPDO

The load immediate instruction (loi) places the 8-bit value d in the low order 8-bits of
register R,, and sets the remaining 24 high-order bits of R, to 0.

01 2 3 45 6 7 8 9 1011 12 13 14 15

Ra=d;
PC = PC+1: 1 0 Ra 0O 0 O d

The jump if zero (jz) instruction changes the program counter PC' to the value specified
by d if the value in register R, is 0, and otherwise it increments the program counter by 1.

if (Ra==0) 01 2 3 45 6 7 8 9 1011 12 13 14 15

PC=d;
dse 11 Ra 0 0 O d
PC = PC+1,

The processor will be clocked. The value of PC' when a clock pulse occurs specifies which
of the 256 registers Fy, ..., P55 holds the instruction that should be executed. The operation
specified by the instruction is performed, which may include both an operation on data held
in the registers, as well as a change in the program counter. The initial state of PC can be
assumed to be 0.

Building Operators

The action of our processor will be built around 4 operator units (one for each instruction).
Each operator unit will have different inputs, but they will all have the same four outputs:

1. A 1-bit jump flag J that indicates whether or not the program counter should jump.

2. A 32-bit output value V that is the value that the module wishes to have saved in some
register.

3. A 3-bit index value I that indicates which register to save V into.

4. A 1-bit enable flag E, which indicates whether or not V' should be saved into register I,
or if V' can just be discarded.

Some of these outputs will be somewhat redundant, for instance the add operator unit
should always set J to 0.

Problem 5a (6 points):

Give a complete schematic for the addition operator unit. It should have three inputs, a 32-bit
value (assumed to have already been loaded from R,), a 32-bit value from Ry, and an 8-bit
wire with the rest of the instruction. The addition operator unit should have the outputs
discussed above.

Problem 5b (10 points):

Give a complete schematic for each of the other operator units (neg, jz, and loi). Your
outputs must be (J,V, I, E) as given above. Design your inputs to closely resemble those of
the addition operator unit as much as possible. Even if it involves ignoring some input, this
will simplify later work.

Problem 6 (30 points):

Draw a diagram of the entire processor. You may use any of the circuits that we have
designed so far, including gates, adders, multiplexers, demultiplexers, and registers. The
adders, multiplexers, demultiplexers, and registers can be of any size and number. You may
also design and use your own circuits if you so wish. Finally you may use the constant values
0 and 1 as the inputs to any of your circuits, if that is convenient.

Here is some advice. Make your design as simple as possible, and don’t worry too much
about trying to minimize the number or the size of the circuits in your diagram.

Strive for modularity by building simple units and putting them together.

Some possibilities for modules (not necessarily required) include:

e a register file unit that encapsulates the functionality of Ry ... Rz, selecting registers for
reading/writing/etc.

e an instruction file unit that stores the program

e a program counter unit

Depending on your design, you may desire other modules.

For sake of simplicity, you can assume that registers Py, ..., Py already contain the in-
structions to be run, and their contents do not need to be changed. They should be treated
as read-only registers (with Set always set to 0). Also, don’t actually draw 256 registers—just
indicate where they go, and how they are connected to other circuits.

Problem 7 (10 points):

Write a program for this processor to perform a multiplication x-y. Assume that x is stored in
register Ry, y is in R3, and the final answer is to be placed in register R4. Don’t worry about
overflows. Since we do not have an end or halt instruction, you should end your program by
jumping to instruction number 251. (Hint: Don’t write a recursive program!)

You do not need to write your program out in binary (in fact, please don’t!) You should
write out the sequence of instructions giving their names and their operands, with a label
next to each instruction indicating which instruction register it occupies. For example, the
following program puts 12 in register 2 and then repeatedly adds -1 to it until it reaches 0,
whereupon it exits.

loi 1 — R3

neg R3

loi 12 — R2

add RQ, R3 - RQ
jzr Ry — 251
gzr Ry — 3

Ttk W N~ O

Remarks on Two’s Complement Representation:

Two’s complement is a method to encode signed integers. The leading (or leftmost) bit is
called the sign bit. If the sign bit is 0, then the integer represented is non-negative. For
example, the string 00100 represents the integer 4.

If the sign bit is 1, the integer represented is negative. To obtain the absolute value of a
negative integer represented in two’s complement, we first invert all the bits, and then add one
to the result. For example, the string 10011 represents a negative integer (since the leading
bit is 1). To see what the magnitude of this integer is, we first invert all the bits and get
01100, to which we add one to get 01101. Hence, the string 10011 represents the integer —13.

We can use the same procedure for converting a negative integer into its two’s complement
representation. To represent the integer —13, we start with 01101, the binary representation
of 13. We first invert all the bits to get 10010, to which we add one to obtain 10011, the
two’s complement representation of —13.

In order to test your understanding of two’s complement, ask yourself the following ques-
tions: (a) what is the largest (positive) number that can be represented by n bits in two’s
complement? (b) What is the smallest (negative) number that can be represented by n bits
in two’s complement?

