
6.189 – Intro to Python 
IAP 2008 – Class 8 
Lead: Aseem Kishore  
 

Lab 10: Compound Dictionaries 
 

 
Quick Reference 
 
D = {} – creates an empty dictionary 
D = {key1:value1, …} – creates a non-empty dictionary 
 
D[key] – returns the value that’s mapped to by key. (What if there’s no such key?) 
D[key] = newvalue – maps newvalue to key. Overwrites any previous value. 
del D[key] – deletes the mapping with that key from D. 
 
len(D) – returns the number of entries (mappings) in D.  
x in D, x not in D – checks whether the key x is in the dictionary D. 
 
D.items() – returns the entries as a list of (key, value) tuples. 
for k in D – iterates over all of the keys in D. 
 
 
Problem 1 – Inventory Finder 
 
Download the inventory.py file. The file shows eight different items, each having a name, a price
and a count, like so: 
 
HAMMER = “hammer” 
HAMMER_PRICE = 10 
HAMMER_COUNT = 100 
 
We’re going to consider that customers generally come in with an idea of how much money they 
want to spend. So we’re going to think of items as either CHEAP (under $20), MODERATE 
(between $20 and $100) or EXPENSIVE (over $100). 
 
First, fill in the variable inventory so that all of the data for the eight items is inside inventory. 
Make sure that you maintain the notion of CHEAP, MODERATE and EXPENSIVE. Then, 
implement the function get_info that takes a cheapness and returns a list of information about 
each item that falls under that category, as the function’s information says. 
 
Important: there should NOT be a loop inside this function. Our inventory is small, but for a giant 
store, the inventory will be big. The store can’t afford to waste time looping over all of the 
inventory every time a customer has a request. 
 
When you’re finished, just run the program. All of the testing lines should print True. 



Problem 2 – Indexing the Web, Part 2 
 
So we have a working search engine. That’s great! But how do we know which sites are better 
than others? Right now, they’re just returning the sites in an arbitrary order (remember, 
dictionaries are unordered). In this problem, we’ll implement a ranking system. 
 
What will we rank based on? Google used an innovative ranking system that ranked a page 
higher if more *other* pages linked to it. We can’t do that unfortunately, because that requires a 
considerable understanding of graph theory, so what else can we do? Well, before Google, 
most engines ranked based on either the frequency (i.e. number of hits) of search terms inside 
the page, or by the percentage of those search terms within the page’s text. We’ll go with the 
frequency arbitrarily – we found after Google that neither of these measures are particularly 
good, and there isn’t a clear advantage between the two. 
 
To begin, download the following files: 
 

webindexer2.py – this is the file in which you’ll write all of your code. 
websearch2.py – this completed program is an updated search engine that will use 

your new index with a ranking system. 
 
Again, take a look at the main program, websearch2.py. It’s almost identical to the previous 
version, but you can see that it now expects to have tuples of (site, frequency) rather than just 
the sites themselves. This way, it is able to display how many hits each site has. It also expects 
that the sites are already sorted/ranked from highest to lowest frequency. 
 
So let’s take a look at webindexer2.py. Again, it’s almost identical to the previous version, but 
the descriptions for the search functions now state that frequencyis returned along with each 
site, and the sites are sorted by rank. 
 
In order to rank each site by the frequency of search terms in it, we’ll have to store the 
information in our index.  
 
To begin, you can copy your functions’ code from webindexer1.py into webindexer2.py, but 
you don’t have to. 
 
Task 1 – Implement the index_site function. What information will each site in the index need 

to store with it? What’s the best way to store this information? If we have more than 
one choice, which choice is mutable, and which one is immutable? While we’re 
building the index, we’ll be repeatedly making changes, so which choice is better?  

 
Hints: If you’re stuck, think very logically. When I’m searching, I have a word. I want to 
be able to look up this word and get what information? The information needs to be 
enough for me to sort it. 

 
Now that we’ve taken care of indexing, we can again move on to searching. And again, we’ll 
tackle one word first before multiple words. This should be very similar to your previous function, 
but we have to do one additional thing: sort the results based on frequency. 
 
Task 2 – Implement the search_single_word function. We have to return a list of (site, 

frequency) tuples. If we have a list L of these tuples, to sort them, do this: 
 



L.sort(key = lambda pair: pair[1], reverse = True) 
 
Don’t worry about what this means yet, but if you’re interested, we can explain. 

 
And again, now that we can handle one word, we’ll handle multiple words. The same logic 
applies as before, but again, we have to sort the results before returning them. 
 
Task 3 – Implement the search_multiple_words function. The argument words is a list, not a 

string. Make sure you don’t return duplicate sites in your list! And as before, make sure 
you sort the list (using the same statement as above). 

 
You should now have a working indexer with a ranking system, so run websearch2.py and try it 
out! And for some real fun, don’t use the smallest set of files. Use the 20 set or the 50 set to see 
the ranking really come into play. 
 
As before, on the next page, I’ve pasted my output for a few searches from the mitsites20.txt 
file. If your output is quite different, you may have done something wrong. If it’s just slightly 
different, it may just be a change in the pages (e.g. web.mit.edu) from when I indexed the site to 
when you did. 



Here is my output: 
 
6.189 Web Search! (version 2) 
 
Building the index... (this may take a while) 
Done! 
 
At any time, you may search for "QUIT" to quit. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
What would you like to search for? hockfield 
 
1 site(s) found with the terms "hockfield": 
 
(1 hits) http://mitsloan.mit.edu/ 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
What would you like to search for? susan hockfield 
 
2 site(s) found with the terms "susan hockfield": 
 
(2 hits) http://mitsloan.mit.edu/ 
(1 hits) http://mitpress.mit.edu/ 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
What would you like to search for? computer science 
 
11 site(s) found with the terms "computer science": 
 
(102 hits) http://ocw.mit.edu/OcwWeb/web/courses/courses/index.htm 
(12 hits) http://mitworld.mit.edu/ 
(7 hits) http://dspace.mit.edu/ 
(6 hits) http://ocw.mit.edu/ 
(4 hits) http://www.eecs.mit.edu/ 
(4 hits) http://mitpress.mit.edu/ 
(4 hits) http://www.csail.mit.edu/ 
(3 hits) http://dmse.mit.edu/ 
(1 hits) http://www.media.mit.edu/ 
(1 hits) http://architecture.mit.edu/ 
(1 hits) http://laptop.media.mit.edu/ 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
What would you like to search for? python 
 
No sites found with the terms "python". 
Try a broader search. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
What would you like to search for? QUIT 
 
Thanks for searching! 


