
Project: Hangman 

We’re going to write the game of Hangman. This document provides a step-by-step approach to 

help you build the game. Use it as much or as little as you want. If you’re uncertain, I 

recommend sticking with the document; however, if you want to try attacking this program on 

your own, that’s great too. Actual coding starts in question 2. 

You only have to pass in the Hangman code. You don’t have to pass in answers to all the 

intermediate questions. 

1. Remember the maximum value trick we covered yesterday? Here's another problem along 

the same vain: 

Let's say I want to check and see if a number of facts are ALL true. For example, is every 

element in a list less than 6? 

Use what you learned from yesterday (and the homework) to write a for loop that will 

determine if all elements in a variable some_list are less than 6. Check your code using 

some_list = [1,5,3,4] and on some_list = [5,3,7,5]. 

We can also test if AT LEAST ONE fact is true. Write a for loop that will determine if at least one 

element in a list is less than 6. Test on [7,8,7,9] and [7,2,5,8] 

The first is the equivalent of checking A and B and C and D and ... The second is the equivalent 

of checking A or B or C or D or ... 

Throw out this code when you’ve finished the problem – we just wanted to make sure you can 

solve problems of this type (you’ll need it for Hangman.) 

2. Create a new file hangman.py. We're going to start by storing the state of the game in 

variables at the top of the program. The state is a complete description of all the information 

about the game. In Nim, the state would be: 

- The current player

- How many stones are in the pile


For Hangman, we need to store 3 pieces of information:


secret_word: The word they are trying to guess (string).

letters_guessed: The letters that they have guessed so far (list).

mistakes_made: The number of incorrect guesses they've made so far (int).


You can name these something else if you'd like, but use a descriptive name.




For now, set secret_word to be "claptrap." Once we've finished our program and got it working, 

then we'll add a prompt at the beginning of the program to let a friend of the user choose the 

word. (This is called incremental programming – instead of trying to get everything right the 

first time, we'll get the basic program working then incrementally add small portions of code.) 

"claptrap" was selected because it's reasonably long and has duplicate letters -- hopefully that 

will allow us to catch any bugs we might make. 

Question -- why can't we use len(letters_guessed) for mistakes_made? 

1b. Also create a constant variable at the top: 

Max_guesses = 6. 

Constant just means that we won't change it. This isn't enforced by the compiler, so be careful 

not to accidentally change the value of Max_guesses. My style is to begin variables that I don't 

plan to change with a capital letter -- other people do different things (some would have 

written MAX_GUESSES, for example.) Any way works. 

We can decide what to do with this at the end (should we have an "easy", "medium", "hard" 

mode with different guesses?) 

Idea: At the end of the program, we should change “claptrap” to something with more than 6 

distinct letters to make sure that the program doesn't accidentally increment the number of 

mistakes on a correct guess. 

Pre-3. Quickie reminder: Enter the following lines of code in the prompt 

for i in "hello": 

print i 

for i in ['a',True,123]: 

print i 

Just a reminder on how for loops work. 

3. Let's start writing code! Here’s our approach..we’ll write functions to take care of smaller 

tasks that we need to do in hangman, then use them to write the actual game itself. 

First, write the function word_guessed(). word_guessed() will return True if the player has

successfully guessed the word, and False otherwise.


Example:

If the letters_guessed variable has the value ['a','l','m','c','e','t','r','p','n'], word_guessed() will

return True. If the letters_guessed variable has the value ['e','l','q','t','r','p','n'], word_guessed()

will return False.




Hint: Obviously, you'll use a loop. There are two things you could loop over -- the letters in 

secret_word or the letters in letters_guessed. Which one do you want to loop over? Don't just 

guess here, think! One of them makes sense / will be a lot easier than the other. You'll also be 

using the trick from the first problem. 

4. Try this: type the following commands into the prompt. 

dir()

a = 5

dir()

b = 3

c = 7

a = 14

dir()

from string import *

dir()


What does the dir function do? 

While still at the prompt, type help(join) and help(lower). 

4b. What lines of code belong in the missing spaces to achieve the desired outcome? 

List1 = ['H','e','a','r'] 

missing 

missing 

print string1 #prints 'hear' 

5. Back to Hangman. So you'll want to use the string library. Add from string import * to the top 

of your program. 

6. Now write a function print_guessed() (or whatever you want to name it) that returns a string 

that contains the word with a dash ‘-‘ in place of letters not guessed yet. 

Example:

If the letters_guessed variable has the value ['a','p'], the expression print print_guessed() will

print --ap--ap.

If the letters_guessed variable has the value [], the expression print print_guessed() will print

--------.

If the letters_guessed variable has the value ['a','l','m','c','e','t','r','p','n'], the expression print

print_guessed() will print claptrap.


Hint: There are a lot of ways to go about this. One way is to iterate through secret_word and

append the character you want to print to a list. Then use the join function to change the list

into a string: your last line will look something like return join(character_list, “”)




7. Now write the main game code. It may help to informally sketch out the code you want to 

write, e.g 

continually loop { 

print n guesses left 

print word 

get letter in lowercase 

has letter already been guessed? 

is letter in word? 

If so, what should I do? If not, what should I do?} 

(remember the break statement if you use the continual loop) 

8. Congratulations! You’ve finished the game. Now we want to make it look pretty so everyone 

else will be impressed as we are :p. Polish your game a bit (don’t just use the word claptrap 

every time) 

Hint: If you put from random import * at the top of your code, you can use the randint(a,b) 

function – it returns a random number between a and b (inclusive.) This is optional, though 

(you could just prompt them too.) 


