6.189 -Homework ONLY

Session 7

Administrivia

Name:

Instructions:

1. Err..complete the questions :).
2. When we ask for output, you DON'T have to write the spaces/newlines in.

Program Text:
print "X", print " X ",

Output:
XX

Day 4: More Loop Practice

Problem 20:

Each of the following function definitions takes a list as a parameter and solves a specific problem. Correctly fill the blanks in the following code to solve the problems.

There is a way to solve each problem by only filling in the blanks. Don't just add extra lines to force a solution. Also, there may even be more elegant solutions that don't use all the blanks - feel free to use those too.

Program Text:

```
def swap_first_last(my_list):
    """This function swaps the first and last elements in a list. It
has no return value."""
    temp =
```

\qquad
\qquad

``` =
``` \(\qquad\)
\(\qquad\)
``` =
``` \(\qquad\)

Program Text:
```

def second_biggest(my_list):
"""This function returns the second biggest element in my_list. It
assumes that my_list contains distinct, positive integers."""
second_biggest = -5
biggest = -1
for i in my_list:
if i >

```
\(\qquad\)
``` :
        second_biggest =
                                L
        biggest =
```

\qquad

```
        elif i > second_biggest:
        second_biggest =
        L
    return second_biggest
```


Problem 13:

You may recall the notion of a power series from Calculus. A power series is an infinite polynomial series that approximation a continuous function. For example, the power series of $\sin (x)$ is

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

The more terms you calculate, the closer your expression will be to $\sin (x)$ - hence the reason we call it an approximation.

Write a function to calculate $\sin (x)$ using the above power series (well, fill in the blanks, at least.)
Note: You've already seen the code for a function that can calculate the factorial of a number (Problem 11.) Assume the existance of a factorial(x) function that calculates the factorial of x.

Program Text:

```
def calculate_sin(x, number_of_terms):
    "Calculates the value of sin(x) using the power series."
    number_of_terms = min(20, number_of_terms) #do at most 20 terms
    sin_value = 0
    for i in range(number_of_terms):
        new_term = x **
        new_term /= factorial(
```

\qquad

```
        new_term *= (-1) **
        sin_value += new_term
return sin_value
```

