
MIT OpenCourseWare 
http://ocw.mit.edu
 
6.189 Multicore Programming Primer, January (IAP) 2007 
 
 
 
Please use the following citation format: 
 

Saman Amarasinghe and Rodric Rabbah, 6.189 Multicore Programming 
Primer, January (IAP) 2007. (Massachusetts Institute of Technology: 
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). 
License: Creative Commons Attribution-Noncommercial-Share Alike. 

 
Note: Please use the actual date you accessed this material in your citation. 
 
 
For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms
 

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms


 

6.189 Multicore Programming Primer Mini-Quiz #5 (1/22/2007) 
 
 
It is not far fetched to imagine the “print” approach is the most widely used debugging 
utility. Novice and expert programmers alike use this approach to print out information as 
their buggy code executes in order to reveal clues about their code defects. This approach 
works reasonably well in sequential programs with a single thread of execution, but is not 
likely to be as useful for debugging parallel programs because of the multiple threads of 
execution. 
 
What complicates the debugging process for parallel codes, and if you were to build a 
debugging tool, what features might you provide to help programmers track down their 
bugs productively? 
 
 
The non-deterministic nature of parallel execution with multiple threads makes it difficult 
to diagnose problems because execution behavior may not be repeatable. Hence 
symptoms such as race conditions or deadlock may disappear from one run to another, or 
the addition of debugging code (e.g., print statement) affect timing in such a way that 
race conditions or deadlocks seemingly disappear. 
 
Debugging tools for parallel programming have to provide functionality to diagnose 
behavior that may arise from non-deterministic execution. For example, address-value 
traces may be useful in diagnosing race conditions, and tracking communication patterns 
between threads can help to identify deadlock issues. Additionally checkpointing and 
replay features may also be useful, as are visualization facilities although scaling the 
visual debuggers to hundreds or thousands of threads may prove difficult. 
 
 
 
 
 
 
 
 
 
 


