
MIT OpenCourseWare 
http://ocw.mit.edu 

6.189 Multicore Programming Primer, January (IAP) 2007 

Please use the following citation format: 

Mike Acton, 6.189 Multicore Programming Primer, January (IAP) 2007. 
(Massachusetts Institute of Technology: MIT OpenCourseWare). 
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative 
Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


6.189 IAP 2007


Lecture 16


Introduction to Game Development


Mike Acton, Insomiac Games. 6.189 IAP 2007 MIT 



Introduction to Game Development 
(on the Playstation 3 / Cell ) 

● Mike Acton 
– Engine Director, Insomniac Games 

– Director, CellPerformance.com 



Different Types of Game 
Development 

● Casual 
● Console 
● PC 
● Handheld 
● Cellphone 
● Single Player 
● Multi Player 



Console Development Priorities 

●	 The code itself is not that important. 
●	 The design of the data affects performance 

more than the design of the code. 
●	 Ease of programming is either a minor or non-

priority. 
●	 Portability is not a concern. 
●	 Performance is still king. 



Development Team 

● Artists 
– Animation, Shader, Texture, Modeling 
– Environment, Lighting, ... 

● Designers 
– Systems, Level, ... 

● Writers 
● Producers 
● Programmers 

– Gameplay, Engine, AI, Special Effects, 
– Sound/Music, ... 



What Impacts Game's Technical

Design? 

●	 Type of game 
●	 Framerate 
●	 Schedule 
●	 Cost 
●	 Hardware 
● Compilers

●
 ... 

●	 How does this affect 
code reusability? 

●	 How does this affect 
cross-platform 
design? 



What are the major game modules?


● Memory ● Loading, streaming 
management ● Scene graph 

● Math ● AI 
● Collision ● Compression 
● Physics ● Sound, Music 
● Static graphics ● Special Effects 
● Animation ● State machines 
● Procedural graphics ● Scripting 
● Lighting ● Motion control 

● ... 



Overview


●	 How does programming on the Playstation 3 
affect the (macro) design of the major 
systems? 

●	 Overview of design process for a specific 
system (Animation). 



Structure Design (1)


●	 Conventional structures are (surprisingly?) 
needed very little in engine-level SPU code. 
–	 Data is compressed 
–	 Data is sorted by type (i.e. Fewer flags) 
–	 Data is organized into blocks or streams 
–	 Data is accessed only in quadwords 



Structure Design (2) 

● Organize data carefully: 
– Prefer fixed (known) size blocks 
– Fundamental unit: 128 bytes (Cache line) 
– Fundamental unit: 16 bytes (Quadword) 
– Prefer uniform data 

● Minimum working sizes: 
– 4 x 2 x 64 bits 
– 4 x 4 x 32 bits 
– 4 x 8 x 16 bits 
– 4 x 16 x 8 bits 
– 4 x 128 bits 



Basic Math 

●	 e.g. Vector Class 
–	 Usually the first thing a programmer will make, but 

consider: 
●	 SIMD, Altivec vs. SPU instruction set 
●	 Floats vs. Double vs. Fixed-point 
●	 SPU floating-point format 
●	 Component access 

–	 ... There's no value here. 



Memory Manager 

●	 Static allocation is preferred to dynamic 
●	 Most data patterns are known in advance 
●	 When designing allocator, consider: 

–	 Page sizes 
–	 LRU is most common, but pretty bad. 
–	 Hierarchy of allocations 
–	 Fragmentation is a non-issue for well planned 

architectures 
–	 Remember cache line alignment. 
–	 SPU transfer blocks, 16K 



Collision Detection


● Affects high-level design 
– Deferred results 
– Grouped results 

● SPU decomposition for: 
– Static geometry in scene

– Dynamic geometry in scene 



Procedural Graphics


● Patch size ● Particles 
● Filter types ● Cloth 
● Sync of source reads ● Fonts 
● Sync with GPU ● Textures 
● SPU vs. RSX ● Parametric geometry 

● ... 



Geometry databases 

● No scene graph 
● Domain information linked by key 
● Cache and TLB affect design choices 

– e.g. Static geometry lookup (Octree, BSP, etc.) 
● Geometry lookups on SPU 

– Spatially pre-sort 
– Multiple simultaneous lookups 



Game Logic 

● State machines 
– Size affected by SPU 
– Deferred results 
– Logic lines can be deferred 

● Scripting 
– Interpreter size 
– Multiple streams to hide memory accesses 

● Motion control 
– High-level sync (Animation, AI, Physics)




Animation (1) 

● Starting with the basics: 
– Simple playback, animation channels 

● Related data 
● e.g. Rotation + Translation + Scale = Joint 

– Euler vs. quaternion 
● Euler: More compressible 
● Quaternion: Less messy 
● Gimbal lock is manageable in practice. 

– Format, double vs. float vs. half vs. fixed-point 
– Rotations: Degrees, radians or normalized?




Animation (2) 

● Animation frame storage 
– Basic 9 channels (raw)

– Uniform channels 

● Plus uniform channel map 
● Plus uniform channel count 

– X Number of joints 
– Decide on max channels 



Animation (3) 

● Channel curve fitting 
– Closer to root, tighter fit. 
– e.g. Simple spline 

● Store time values 
● Problem: Looping scalars 
● Problem: Unlimited length 



Animation (4) 

● e.g. Spline segments 
– Plus storage for time maps 
– Plus segment lookup time 
– Advantage: Can re-order blocks 
– Advantage: Long lengths OK 
– Disadvantage: Less compressable

– Advantage: Solves scalar loop problem 

● Summarize: DMA and transform. 



Animation (5) 

● e.g. Adding dynamic channel support 
– Add uniform data table 

● Maximum dynamic channels with linkage, or... 
● All uncompressed 

– Add (simple) contraints 
● Max change 
● Max range 
● Max acceleration (impacts storage) 

– Blend information 
– Summarize: DMA and transform. 



Animation (6) 

● More on mixing: 
– Phase matching 
– Transitions 
– Translation matching 

● Drawing animated geometry 
– Single or double buffer joints: 

● Single: Requires more organization 
● Double: More memory, more flexible. 



Optimization 

● Required for practice 
● Impacts design 
● NOT the root of all evil 


