
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Arvind, 6.189 Multicore Programming Primer, January (IAP) 2007.
(Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 14

Synthesizing Parallel Programs

Prof. Arvind, MIT. 6.189 IAP 2007 MIT

1

Synthesizing parallel programs
(or borrowing some ideas from
hardware design)

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

6.189

January 24, 2007

2

SoC Trajectory:
multicores, heterogeneous, regular, ...

On-chip memory banks

Structured on-
chip networks

General-
purpose

processors

Can we rapidly produce high-quality chips and
surrounding systems and software?

Application-
specific

processing units

Image removed due to
copyright restrictions.
IBM cell processor.

Plan for this talk

My old way of thinking (up to 1998)

� “Where are my threads?”
� Not necessarily wrong

My new way of thinking (since July)
� “Parallel program module as a resource”
� Not necessarily right

Connections with transactional programming,
though obvious, not fully explored yet

Acknowledgement: Nirav Dave 3

Only reason for parallel programming
used to be performance

This made programming very difficult

� Had to know a lot about the machine

� Codes were not portable – endless
performance tuning on each machine

� Parallel libraries were not composable

� Difficult to deal with heap structures and
memory hierarchy

� Synchronization costs were too high to
exploit fine-grain parallelism

How to exploit 100s of threads from software?

4

5

Implicit Parallelism
Extract parallelism from programs
written in sequential languages
� Lot of research over four decades –

limited success

Program in functional languages
which may not obscure parallelism in
an algorithm

If the algorithm has no parallelism then forget it

Image removed due to copyright restrictions.

6

If parallelism can’t be
detected automatically ...

High-level
� Data parallel: Fortran 90, HPF, ...
� Multithreaded: Id, pH, Cilk,..., Java

Low-level
� Message passing: PVM, MPI, ...
� Threads & synchronization:

Forks & Joins, Locks, Futures, ...

Design/use new explicitly parallel
programming models ...

Works
well
but not
general
enough

7

Fully Parallel, Multithreaded Model
Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
at all levels

Synchronization?

Efficient mappings on architectures proved difficult

My unrealized dream

A time when Freshmen will be taught

sequential programming as a special case

of parallel programming

8

9

Has the situation changed?

Yes
� Multicores have arrived
� Even Microsoft wants to exploit

parallelism
� Explosion of cell phones
� Explosion of game boxes

Freshmen are going to be hacking
game boxes and cell phones

Image removed due to
copyright restrictions.
Cellular phone and game
box with controller. It is all about parallelism now!

10

now ...

Cell phone

Mine sometimes misses a call
when I am surfing the web
� To what extent the phone call

software should be aware of web
surfing software, or vice versa?

� Is it merely a scheduling issue?
� Is it a performance issue?

Sequential “modules” are often
used in concurrent environments
with unforeseen consequences

Image removed due to
copyright restrictions.
Cellular phone.

New Goals
Synthesis as opposed to Decomposition

K
n
o
w

 h
o
w

 t
o
 d

o
 t

h
is

A method of designing and connecting
modules such that the functionality and
performance are predictable
� Must facilitate natural descriptions of concurrent

systems

A method of refining individual modules into
hardware or software for SoCs
A method of mapping such designs onto
“multicores”
� Time multiplexing of resources complicates the

problem

11

12

A hardware inspired methodology
for “synthesizing” parallel programs

Rule-based specification of behavior
(Guarded Atomic Actions)
� Lets you think one rule at a time
Composition of modules with guarded
interfaces

Some examples:
� GCD
� Airline reservation
� Video codec: H.264
� Inserting in an ordered list

Bluespec

Unity – late 80s
Chandy & Misra

13

Bluespec: State and Rules
organized into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition Î action
Rules can manipulate state in other modules only via their
interfaces.

interface

module

14

Execution model

Repeatedly:
Select a rule to execute
Compute the state updates
Make the state updates

Highly non-
deterministic

Primitives are provided
to control the selection

Example: Euclid’s GCD
A GCD program

GCD(x, y) = if y = 0 then x
elseif x>y then GCD(y, x)
else GCD(x, y-x)

Execution
GCD(6, 15) ⇒ GCD(6, 9) ⇒ GCD(6, 3) ⇒

GCD(3, 6) ⇒ GCD(3, 3) ⇒ GCD(3, 0) ⇒ 3

What does this program mean in a concurrent setting ?

GCD(623971, 150652) + GCD(1543276, 9760552)
15

16

Suppose we want to build a
GCD machine (i.e., IP module)

GCD

Parallel invocations?
� Recursive calls vs Independent calls

Does the answer come out immediately? In predictable time?
Can the machine be shared?
Can it be pipelined, i.e., accept another input before the first
one has produced an answer?

These questions arise naturally in hardware design

But these questions are equally valid in a parallel
software setting

GCD as a
resource

x y

swap sub

17

module mkGCD
x <- mkReg(0);
y <- mkReg(0);

rule swap when ((x > y) & (y != 0)) ==>
x := y | y := x

rule subtract when ((x <= y) & (y != 0)) ==>
y := y – x

method start(a,b) when (y==0) ==>
x := a | y := b

method result() when (y==0) ==> return (x)

end

GCD in Bluespec

External
interface

State Synthesized
hardware

Internal
behavior

What happened to the recursive calls?

18

rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int

y == 0

y == 0

implicit
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

The module can easily be made polymorphic

Many different implementations, including pure software
ones, can provide the same interface

module mkGCD (I_GCD)

19

The Bluespec Language

20

Bluespec: A Language of
Atomic Actions
A program is a collection of instantiated modules m1 ; m2 ; ...

Module ::= Module name
[State variable r]
[Rule R a]
[Action method g (x) = a]
[Read method f (x) = e]

e ::= r | c | t
| Op(e , e)
| e ? e : e
| (t = e in e)
| m.f(e)
| e when e

a ::= r := e
| if e then a
| a | a
| a ; a
| (t = e in a)
| m.g(e)
| a when e

Conditional actionParallel CompositionSequentialComposition

Method call
Guarded action

Guards vs If’s
Guards affect the surroundings

(a1 when p1) | a2 ==> (a1 | a2) when p1

Effect of an “if” is local

(if p1 then a1) | a2 ==> if p1 then (a1 | a2) else a2

p1 has no effect on a2

21

22

Airline Reservation

23

Example: Airline reservation
a problem posed by Jayadev Misra

Ask quotes from two airlines
� If any one quotes below $300, buy

immediately
� Buy the lower quote if over $300
� After one minute buy from

whosoever has quoted, otherwise
flag error

Solution is easy to express in Misra’s ORC

Express it using threads? Complicated

24

Solution in Bluespec
module mkGetQuotes();

define state elements Aquote, Bquote, done, timer

rule getA when !done ==> ... // executes when A responds
rule getB ... rule timeout ... rule timer

end

method bookTicket(r) when done ==>
A.request(r) | B.request(r) | done := False

w | Aquote := INF | Bquote := INF | timer :=0

method getTicket() when done ==> return (ticket)

“done” also means “not busy”

Straightforward

rule pickCheapest when
w !done & (Aquote != INF) & (Bquote != INF) ==>
w (if (Aquote < Bquote) then ticket <- A.purchase(Aquote)
w else ticket <- B.purchase(Bquote))
w | (done := True)

25

Video Codec: H.264

26

Example: H.264 Decoder
NAL

unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Scale /
YUV2RGB

Ref
FramesA dataflow-like network

May be implemented in hardware
or software depending upon ...

Available codes (not multithreaded)

Reference code
� 80K lines, awful coding style, slow

ffmpeg code for Linux
� 200K lines, mixed with other codecs

Codes don’t reflect the dataflow structure
� Pointers to data structures are passed around and

modified. Difficult to figure out which block is
modifying which parts

� No model of concurrency. Even the streaming aspect
gets obscured by the code

The code can be written in a style which will
serve both hardware and software communities.

27

28

H.264 Decoder in Bluespec
Work in Progress - Chun-Chieh Lin et al

Lines of
Bluespec

Total 9309

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Scale /
YUV2RGB

Ref
Frames

171 2871 838

817

2789

996
136

Misc 691

Synthesis results
12/15/06
Decodes 720p@18fps
Critical path 50Mz
Area 5.5 mm sq

Baseline profile

Any module can be implemented in
software
Each module can be refined separately
Behaviors of modules are composable
� Good source code for multicores

29

Takeaway
Parallel programming should be based
on well defined modules and parallel
composition of such modules
Modules must embody a notion of
resources, and consequently, sharing
and time-multiplexed reuse
Guarded Atomic Actions and Modules
with guarded interfaces provide a solid
foundation for doing so

Thanks

