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Speech Synthesis Goals 

� Produce speech in real time by
modeling airflow in the vocal tract 

� Modify existing gnuspeech software 
to run on Cell 

� Improve speech quality by using

additional computational cycles




Why Gnuspeech? 

� Gnuspeech available free under the GNU 
public license 

� Models airflow in the vocal tract in real time

{ no prerecorded sounds 

� Designed for linguistics research 

� Potential to increase in quality with model
complexity and computational power 



Algorithm Components 

Vocal Tract 
Parameters Tube Resonance Model Sound 

MONET 

Text gnuspeech engine	 Phonetic 
Representation 



Part 1: Gnuspeech Engine 

� transform text into purely phonetic form


"all your base are belong to us"

/c // /0 # /w /_aw_l /w /_y_aw_r /w /_b_e_i_s /w

ar_r /w b_i./_l_o_ng /w t_uu /w /l /*a_s # // /c


� dictionary lookup for pronunciation 
� ambiguous cases determined by simple linguistic

model 
� markers for punctuation information 

{ word and phrase boundaries 
{ basic intonation 



Part 2: MONET 

� Transform standard phonetic form into vocal 
tract simulation parameters 

� Determine appropriate rhythm and 

intonation for the given phrase


� Calculate effects neighboring sounds have 
on each other 

� Output seqence of postures – snapshots of 

the shapes the vocal tract takes over time




Part 3:Tube Resonance Model 

� Vocal tract divided into 8 main regions, plus nose 
{ modeled as coaxial cylinders with variable radius 
{ noise source at one end 

� Shape of the vocal tract changes over the course of 
an utterance 

� Models propagation of pressure wave 
{ constantly changing vocal tract shape 
{ physics 

� Pressure wave exiting the mouth = speech 



Allocating Resources 

� Gnuspeech, 
MONET 

� Little computation 
� Extensive dictionary 

lookups 
� No improvements in 

quality feasible 
� Run on PPE 

� Tube Resonance 
Model 

� More computation 
� Small (constantly 

updated) data set 
� Step size decrease 

may improve output 
� Run on SPEs 



TRM Algorithm 

� Input: sequence of postures 
� Main loop: 
{ Update the noise generator (“vocal folds”) 
{ Move the shape of the vocal tract one

step towards the next posture 
{ Update the pressure wave by one

timestep inside the new vocal tract shape 
{ Record the state of the wave at the 


mouth aperture




TRM Profile 

� Where is the time spent in TRM? 
� Task: Percent of Total Time 

{ Updating the noise generator: 52% 
{ Main loop (except noise gen.): 25% 
{ Post-processing sound data: 22% 

� Time per main loop: ~15µs 
� Decreasing step size won’t affect above 


balance of computation in main loop 




Parallelism in the Algorithm 

� Very scarce 
� Each main loop iteration has true 

dependences on the previous one 
{ state of air flow in vocal tract 
{ state of noise generator wave 

� Default main loop frequency: 70kHz 
� Pipelining possible for post-processing




Challenges 

� Objective C and GNUStep 
{ difficult to read 
{ even harder to debug 
{ cannot be compiled for SPE 

� Time-consuming conversion attempts


� Dynamic pointer alignment 



What is working now 

� Line-buffered text to utterances to execution 
of the TRM 

� Monet replacement works minimally 

� Tube runs on PPE 

� Tube partially runs on SPE 



What is not working yet 

� Obscure GNUStep/Monet dictionary bug 

� Monet does not properly execute the tube 

� The tube does not successfully receive data


� The driver does not receive data from the 
post-processor 



Conclusions and Future Work 

� Extremely difficult to parallelize 

� Parallelization can help vocalization quality

{ naturalness 
{ speaker identification 
{ vowel identification 

� Worth the time to rewrite from scratch 
{ C and/or C++ 
{ without the GUI 


