
6.189 IAP 2007


Student Project Presentation 

Speech Synthesis 

Altschul, Chen, Eisner, Stephens, Westrick 6.189 IAP 2007 MIT 



Speech Synthesis 

Omari Stephens 
Joyce Chen 
Eric Eisner 
Drew Altschul 
Brown Westrick 



Speech Synthesis Goals 

� Produce speech in real time by
modeling airflow in the vocal tract 

� Modify existing gnuspeech software 
to run on Cell 

� Improve speech quality by using

additional computational cycles




Why Gnuspeech? 

� Gnuspeech available free under the GNU 
public license 

� Models airflow in the vocal tract in real time

{ no prerecorded sounds 

� Designed for linguistics research 

� Potential to increase in quality with model
complexity and computational power 



Algorithm Components 

Vocal Tract 
Parameters Tube Resonance Model Sound 

MONET 

Text gnuspeech engine	 Phonetic 
Representation 



Part 1: Gnuspeech Engine 

� transform text into purely phonetic form


"all your base are belong to us"

/c // /0 # /w /_aw_l /w /_y_aw_r /w /_b_e_i_s /w

ar_r /w b_i./_l_o_ng /w t_uu /w /l /*a_s # // /c


� dictionary lookup for pronunciation 
� ambiguous cases determined by simple linguistic

model 
� markers for punctuation information 

{ word and phrase boundaries 
{ basic intonation 



Part 2: MONET 

� Transform standard phonetic form into vocal 
tract simulation parameters 

� Determine appropriate rhythm and 

intonation for the given phrase


� Calculate effects neighboring sounds have 
on each other 

� Output seqence of postures – snapshots of 

the shapes the vocal tract takes over time




Part 3:Tube Resonance Model 

� Vocal tract divided into 8 main regions, plus nose 
{ modeled as coaxial cylinders with variable radius 
{ noise source at one end 

� Shape of the vocal tract changes over the course of 
an utterance 

� Models propagation of pressure wave 
{ constantly changing vocal tract shape 
{ physics 

� Pressure wave exiting the mouth = speech 



Allocating Resources 

� Gnuspeech, 
MONET 

� Little computation 
� Extensive dictionary 

lookups 
� No improvements in 

quality feasible 
� Run on PPE 

� Tube Resonance 
Model 

� More computation 
� Small (constantly 

updated) data set 
� Step size decrease 

may improve output 
� Run on SPEs 



TRM Algorithm 

� Input: sequence of postures 
� Main loop: 
{ Update the noise generator (“vocal folds”) 
{ Move the shape of the vocal tract one

step towards the next posture 
{ Update the pressure wave by one

timestep inside the new vocal tract shape 
{ Record the state of the wave at the 


mouth aperture




TRM Profile 

� Where is the time spent in TRM? 
� Task: Percent of Total Time 

{ Updating the noise generator: 52% 
{ Main loop (except noise gen.): 25% 
{ Post-processing sound data: 22% 

� Time per main loop: ~15µs 
� Decreasing step size won’t affect above 


balance of computation in main loop 




Parallelism in the Algorithm 

� Very scarce 
� Each main loop iteration has true 

dependences on the previous one 
{ state of air flow in vocal tract 
{ state of noise generator wave 

� Default main loop frequency: 70kHz 
� Pipelining possible for post-processing




Challenges 

� Objective C and GNUStep 
{ difficult to read 
{ even harder to debug 
{ cannot be compiled for SPE 

� Time-consuming conversion attempts


� Dynamic pointer alignment 



What is working now 

� Line-buffered text to utterances to execution 
of the TRM 

� Monet replacement works minimally 

� Tube runs on PPE 

� Tube partially runs on SPE 



What is not working yet 

� Obscure GNUStep/Monet dictionary bug 

� Monet does not properly execute the tube 

� The tube does not successfully receive data


� The driver does not receive data from the 
post-processor 



Conclusions and Future Work 

� Extremely difficult to parallelize 

� Parallelization can help vocalization quality

{ naturalness 
{ speaker identification 
{ vowel identification 

� Worth the time to rewrite from scratch 
{ C and/or C++ 
{ without the GUI 


