
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Micah Brodsky and Arvind Thiagarajan, 6.189 Multicore Programming
Primer, January (IAP) 2007. (Massachusetts Institute of Technology:
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY).
License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Student Project Presentation

Software Radio

Brodsky, Thiagarajan 6.189 IAP 2007 MIT

Flexible Stream Processing
On the Cell

Case Study: Software Radio

Arvind Thiagarajan and Micah Brodsky

Motivation

z Cell isn’t easy to program
z No shared mem, messy msg passing

z Extracting parallelism is nontrivial
z E.g., pipelining can be quite tricky

z Stream programming (as discussed) can help
address both issues

What We Built
z Lightweight, but expressive streaming framework

targeted at DSP apps
z Data model based on WaveScope streaming DBMS

z Case study:
z Simple Software Radio (Incoherent ASK)

z Main Goals:
z Simplify life for developers
z Automate as much parallelism as possible

Programming Model
z Basic execution unit is the “operator”
z Analogous to StreamIt work fn, or GNURadio block

z Can be arbitrary C++ classes, with state
z Overload iterate() to process block of data

z Apps built by chaining operators:
CREATE_BOX(FIRFilter<float>, filter1, args…)
CREATE_BOX(WhiteNoiseGen, noisegen, args…)
CONNECT(filter1, noisegen)
....

Framework Components
z Lightweight Scheduler on PPE and SPEs
z Static operator mapping to SPEs, but easy to extend

z Signal Blocks (adapted from WaveScope)
z Ref counting, avoid in-memory copies
z Convenient API, with “append” and “subseg”

z Queue, and remote heap mgmt library for Cell

z Automatic pipelining for streaming, SPE-SPE
z Autonomous memory mgmt (not PPE controlled)

S/W Radio Implementation

z Simple prototype to evaluate framework

z 25 Operators, mapped to PPE + 5 SPEs

z ~3K lines of code (2K framework, 1K radio)

S/W Radio (Contd.)

z Simulated Channel
z Random FIR Filter (emulate multipath)
z Additive Gaussian white noise

z Simple ASK modulation

z Incoherent demodulation (quick and dirty)

Example Decoded Waveform

Challenges
z Distributed, almost zero-copy objects

z Lock-free remote heap for streaming data

z Low code footprint on SPE

z Efficient scheduling, SPE-SPE flow control

z Race conditions and memory corruption
z Not completely solved yet /

Prelim Results (S/W Radio)

of Processors Used
Throughput (-O2)

(x1000 samples/sec)

1 (Only PPE) ~ 170

6 (1 PPE + 5 SPEs) ~ 640

Speedup with max #SPEs ~ 4
Code footprint of framework ~ 75K

Issues and Bottlenecks

z Flow control not completely resolved
z PPE spends 50% of its time blocked for SPE

queues to drain

z Code footprint needs further reduction
z Restricts queue sizes, worsens flow problem

Future Work
z Reduce code footprint

z Use framework to investigate dynamic/static
operator Æ SPE assignment algorithms

z Automatic data parallelism
z Run same op in parallel

z Build more apps for Cell using framework

Project Summary

z Dynamic, flexible streaming framework

z Convenient for DSP apps
z Block passing abstraction

z Reasonably scalable (Pipeline parallelism)

z Lots of work remains…

