
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe and Rodric Rabbah, 6.189 Multicore Programming
Primer, January (IAP) 2007. (Massachusetts Institute of Technology:
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY).
License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms

6.189 Multicore Programming Primer Mini-Quiz #3 (1/17/2007)

You've been hired by a new startup company to custom build them a new
multicore processor for their killer application. You have a team of architects and
engineers at your disposal who can design the processor if they only knew how many
cores are needed. There's a limited budget and you need to keep costs down.

You determine that 60% of the tasks in the application can run in parallel, and that the
work can be uniformly divided among them. If your design team can put a maximum of
1000 cores on a chip, how much of a speedup can you expect? What other factors might
you consider in determining how to build your processor?

We assume that each core does not implement functionality that cannot be practically
implemented. Each core is 2-4 issue processor, with a reasonable pipeline depth, cache or
local store, and bandwidth.

From Amdahl’s Law, we can determine that the maximum potential speedup is

n
pp

speedup
+−

≤
)1(

1

where p = 0.60, the parallel fraction of the work; and n = 1000, the number of processors
available for computation. We approximate the second term to be negligible, and hence
the speedup is less than or equal to (1 / 1 – 0.60) or 2.50x.

Notice that for n = 10, the speedup is already 2.17x, and the additional 13% gains in
performance from an order of magnitude increase in cores appears far from justified.

With fewer cores, more time can be spent on optimizing the performance of each core to
better match the target application. For example each core can implement specialized
datapaths for exploit bit-level parallelism, or custom instructions to provide an
application-specific instruction set. This leads to a heterogeneous multicore architecture
that potentially affords a greater speedup by leveraging the same concepts used for
ASICs (application specific integrated circuits).

