
MITOCW | ocw-6-189-iap07-lec17_300k

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR

RABBAH:

OK, so today's the last lecture day we're going to talk about the raw architecture. This is a

processor that was built here at MIT and essentially trailblazed a lot of the research in terms of

parallel architectures for multicores, compilation for multicores, programming language and so

on. So you've heard some things about RAW and the parallelizing technology in terms of

StreamIt. So we're going to cover some of that again here today just briefly and give you little

bit more insight into what went into the design of the raw architecture.

So these are RAW chips they were delivered in October of 2002. Each one of these has 16

processors on it. I'm going to show you sort of a diagram on the next slide. It's really a tiled

microprocessor. We'll get into what that means and how it actually-- what does a tiled

microprocessor give you that makes it an attractive design point in the architecture space?

Each of the raw tiles-- you can sort of see the outline here sort of replicates-- is four

millimeters. It's four millimeters square. It's a single-issue 8-stage pipeline. It has local

memory, so there's a 32K cache. And the unique aspect of the raw processor is that is has a

lot of on-chip networks that you could use to orchestrate communication between processors.

So there's two operand networks. I'm going to get into what that means and what they used

for. But these eventually allow you to do point-to-point communication between tiles with very

low latency. And then there's a network that essentially allows you to handle cache misses and

input and output and one for message passings, a more dynamic style of messaging,

something similar to what you're accustomed to at the cell, for example, in DMA transfers.

This was built in 180 nanometer ASIC technology by IBM. It's got 100 million transistors. It was

designed here by MIT grad students. It's got something like a million gates on it. Three to four

years of development time. And what was really interesting here is that this was-- because of

the tiled nature of the architecture, you could just design one tile and then once you have one

tile, you essentially just plop down more and more and more of them. And so you have one,

you scale it out to 16 tiles. And the design sort of came back without any bugs when the first

chip was delivered.

The core frequency was expected to run at 425-- I think lower than 425 megahertz.

AUDIENCE: Designed for 250?

PROFESSOR

RABBAH:

250 megahertz and came back and it ran 425 megahertz. And it's been clocked as high as

500 megahertz at 2.2 volts.

The chip isn't really designed for low power but the tile abstraction is really nice for power

consumption because if you're not using tiles you can essentially just shut them down. So it'll

allow you to sort of have power efficient design just by nature of the architecture. But when

you're using all the tiles, all the memories, all the networks, in a non-optimized design, you

consume about 18 watts of power.

So how do you use this tiled processor? So here's one particular example. The nice thing

about tile architecture is that you can let applications consume as many tiles as they need. If

you have an application with a lot parallelism then you give it a lot of tiles. If you have an

application that doesn't need a lot of parallelism then you don't give it a lot of tiles. So it allows

you to really exploit the mapping of your application down to the architecture and gives you

ASIC-like behavior-- application specific processing technology.

So one example is you have some video that you're recording and you want to encode it and

stream it across the web or display it on your monitor or whatever else. So you can have some

logic that you map down. If your chips are here, you do some computation. You have

memories sprinkled across the tile that you're going to use for local store. So you can

parallelize, for example, the motion estimation for encoding the temporal redundancy in a

video stream.

You can have another application completely independent running on other part of the chip.

So here's an application that's using four different tiles and it's really isolated. It doesn't affect

what's going on in these tiles. You can have another application that's running something like

MPI where you're doing dynamic messaging, and httpd server and this tile is maybe not used

so it's just sleeping or it's idle. You can have memories connected off the chip, I/O devices. So

it's really interesting in the sense that probably the most interesting aspect of it is you just allow

the tiles to sort of be used as your fundamental resource. And you can scale them up as your

application parallelism scales.

This is a picture of the raw board-- the raw motherboard. Actually you see it in the Stata

Center in the Raw Lab. This is the raw chip. A lot of the peripheral device, firmware and

interconnect for dealing with a lot of devices off the chip are implemented in these FPGAs, so

these are Xilinx chips. There's DRAM. You have connection to a PCI card, USB stick. Network

interface so you can actually log into this machine and use it. And there's a real compiler. It

can run real applications on it.

There's actually a bigger chip that we built where we take four of these raw chips and sort of

scale them up. So rather than having 16 tiles on your motherboard, you can have four raw

chips. That gives you 64 tiles. You can scale this up to a thousand tiles or so on. Just because

of the tile nature, everything is symmetric, homogeneous, so you can really scale it up really

big.

So what is the performance of raw? So looking at the overall application performance, so

we've done a lot of benchmarking. So these are numbers from a paper that was published in

2004, where we took a lot of applications-- some are well-known and used in standard

benchmark suites-- and compiled them for raw using various raw compiler that we built in-

house. And we've compared them against the Pentium 3. So the Pentium 3 is sort of a unique

comparison point because it sort of matches raw in terms of the technology that was used to

fabricate the two.

And what you're seeing here, this is a lock scale. The speedup of the application running on

raw compared to the application running on a P3. So the higher you get, the better the

performance is. So these applications are sort of grouped into a few classes. So the first class

is what we call ILP applications. So these are applications that have essentially instruction level

parallelism. I'm going to talk a little bit more about and sort of explain it. But you've seen this

early on in the lecture-- in some of Saman's lectures. So here you're trying to exploit inherent

instruction level parallelism in the applications. And if you have lots of ILP then you map it to a

lot of tiles and you can get parallelism that way and you get better performance.

These applications here-- what we call the streaming applications. So you saw some of these

in the StreamIt lecture and the StreamIt parallelizer compiler. Some of those numbers were

generated on a raw-like architecture. And then you have the server or sort of more traditional

applications that you expect to run in a server style or throughput-oriented. And then finally

you have bit-level applications. So doing things at the very lowest level of computation where

you're doing a lot of bit manipulation.

So what's interesting here to note is that as you get into more applications that have a lot of

inherent parallelism in them, where you want explicit-- where you can extract a lot of

parallelism because of the explicit nature of the applications-- you can really map those really

well through the architecture. And because of the communication nature-- because of

communication capabilities of the architecture, being able to stream data from one tile to

another really fast, you can get really high on-chip bandwidth and that gives you really high

performance, especially for these kinds of applications.

There are other applications that we've done. Some of the students have worked on in the raw

group. So an MPEG-2 encoder where you're essentially trying to do real-time encoding of a

video screen at different resolutions. So 350 by 240 or 720 by 480 where you're compiling

down to a number of tiles. One, 4, 8 sixteen, 16-- 1 and 16 are somehow missing, I'm not sure

why. And what you're looking for here? Sort of scalability of algorithm. As you add more tiles,

are you getting more and more performance or are you getting better and better throughput?

So you could encode more frames per second for example. So if you're doing HDTV, it's

1080p, then you really want to sort of get-- there's a lot of compute power that you need. And

so as you add more frames, maybe you can get to sort of the throughput that you need for

HDTV.

So this is something that might be interesting for some of your projects as well. And we've

talked about this before. On the cell, as you're using more and more SPEs, can you accelerate

the performance of your application? Can you sort of show that if you're doing some visual

aspect? And you can sort of demonstrate it. So there's a demo that is set up and in the lab

where you can sort of crank up number of tiles that you're using and you get better

performance from the MPEG encoder. And just looking at number of frames per second that

you can get, with 64 tiles-- so the raw chip is 16 tiles, but you can scale it up by having more

chips-- so you can get about 51 frames. These numbers have been improved and there are

different ways of optimizing these performances. At 352 by 4 240, the estimated data rate--

estimated throughput-- of 160 frames per second almost. So this is really high bandwidth.

Another interesting thing that we've done with the raw chip is taking a look at graphics

pipelines and looking at is there anything we can do to exploit the inherent tiled architecture of

the raw chip. So here's a screenshot from Counterstrike and a simplified graphics pipeline

where you have some input to the screen you want to render. You do some vertex shading.

So these are triangles that you want to figure out what colors to make-- what colors to paint

them. The triangle's set up for pixel stage. And in this screen you'll notice that there are two

different things that you're rendering. There's essentially this part of the screen which has a lot

of triangles that span a relatively not-so-complex image.

And then you have these guys here that have fewer triangle span a smaller region of the

frame. And what you might want to do is allocate more computer power to the pixel stage and

less compute power to the vertex stage. So that's analogous to saying, I want more tiles for

one stage of the pipeline and fewer tiles for another. Or maybe I want to be able to

dynamically change how many tiles I'm allocating at different stages of the pipeline. So that as

your screens that you're rendering change in terms of their complexity, you can maintain the

good visual illusions transparently without compromising the utilization of the chip.

So some demos that were done with the graphics group it at MIT-- Fredo Durand's group--

phong shading. You have 132 vertices with 1 light source. So this is what you're trying to

shade. You have a lot of regions black. So if you're looking at a fixed pipeline where the vertex

shader is taking six tiles-- this is on a 64-tile chip-- the rasterizer is taking 15 tiles, the pixel

processor has 15 tiles, the alpha buffer operations has 15 tiles, then you might not get the

best utilization because for that entire region that you're rendering where it's black there's

nothing really interesting happening there. You want to shift those tiles to another processor,

to another stage of pipeline. Or, if you can't really utilize them, then you're just wasting power,

wasting energy, and so you might just want to shut them and not use them at all. So with a

fixed pipeline versus a reconfigurable pipeline where I can change the number of tiles

allocated to different stages of the pipeline, I can get better utilization. And, in some cases,

better performance. So here, fuller bars, and you're finishing faster in time.

So this is indicative also of what's going on in the graphics industry. So the graphics card used

to be very-- well, it had fixed resources allocated to different stage, which is essentially what

we're trying model in this part of the experiment, where more and more now you have unified

shaders that you can use for the pixel shading and the vertex shading. So you're getting into

more of that programmable aspect. Precisely because you want to be able to do this kind of

load balancing and exploit dynamisms that you see in different things that you're trying to

render.

Another example: shadow volumes. You have 4 triangles, one light source. And this was

rendered in three passes. So pass 1, pass 2, pass 3, would essentially take the same amount

of time because you're doing the same computation map to a fixed number of resources. But if

I can change the number of resources that I need for different passes-- so the rasterizer, for

example, and the alpha buffer operations, is really where you need a lot of power. So if you go

from 15 tiles for each to 20 tiles for each, you get better execution time because you were able

to exploit parallelism or match parallelism better to the application. And so you get 40%

percent faster in this particular case.

And another interesting application: this is the largest in the world microphone array. It's

actually in the Guinness Book of Records. It was build in the lab. And what it essentially has--

each of these little boards has two microphones on it. And so what you can use this for is

eavesdropping for example. Or you can carry this around if you want. Pack it in the car and do

some spying. But somewhat more interesting demos that were done with this in smaller scales

was that in a noisy room, for example, if you want the sort of hone in. Let's say everybody

here was speaking, but for the camera they want to record only my voice. They can have a

microphone array in the back that focuses on just my voice. And the way it's done is you can

measure the distance from the time it takes for the sound wave to reach each of these

different microphones and you can focus in on a particular source of noise and be able to just

highlight that.

So there's this demo where's it's a noisy room-- I probably should have had these in here in

retrospect-- there's a noisy room, lots of people are talking, then you turn on the microphone

array and you can hear that one particular source and it's a lot clearer. You can also have

applications where you're tracking a person in a room with videos as well, so you can sort of

follow him around. So it's a very interesting application. An now I regret not having the video

demo in here. Actually, should I do it? It's on the Web. OK.

So a case study using the beamformer. So what's being done in the microphone array is

you're doing beamforming. So you're trying to figure out what are the different beams that are

reaching the microphone. You want to be able to amplify one of them. So looking at the

application written natively in C running on a 1 gigahertz Pentium , what is the operation

throughput? So you're getting about 240 MegaFLOPS. And if you go down to an optimized--

same code but running on single tile raw chip, you get about 19 MegaFLOPS. So a not very

good performance. But here, what you really want to do, is you have al lot of parallelism.

Because each of those beams that's reaching individual microphones can be done in parallel.

So you have a lot of parallelism in that application.

So taking the C program, reimplementing it in StreamIt that you've seen in previous lectures,

and not really optimizing it in terms of doing a lot of the optimizations you saw in the

parallelizing compiler talk, you get about 640 MegaFLOPS. So already you're beating the C

program running on a pretty fast superscalar machine. And if you really optimize the StreamIt

code in terms of doing the fission and fusion, increasing the parallelism, doing better load

balancing automatically, you can get up to 1.4 GigaFLOPS. So really good performance and

really matching the inherent parallelism to the architecture.

So it was just a big overview of the raw chip and what we've done with it in lab. There's more

in here than I've talked about. But what I'm going to do next is give you some insights as to

what is the design philosophy that went into raw architecture, why was it designed the way it

was. And then I'm going to talk a little bit about the raw parallelizing compiler. And while the

StreamIt language and compiler also has a back end for the raw architecture, we've sort of

seen that in previous lectures so I'm not going to talk about that here. So I'm just going to

focus on the first two bullets.

And a few years ago when the project got started, sort of the insight in the wide issue

processors and the design philosophy that was being followed in industry for building wider

superscalars, faster superscalars, was really going to come to a halt largely because you have

scalability issues. So if you look at sort of a simplified illustration of a wide issue

microprocessor, you have your program counter such as instructions. Goes into some control

logic. Control logic is then going to run. You're going to read some variables from the register

file. You'll have a big crossbar in the middle that routes to operands like ALUs. Yell And then

you operate on those and you have to send it back to the register file.

Plus you have this really big problem with the network. So if you're doing some computation--

sorry, I rearranged these slides. So what you have if you have n ALUs, then the complexity of

your crossbar increases as n squared, because you essentially have to have everybody

talking to each other. And in terms of the number of wires that you need out of the register file

to support everybody being able to sort of talk to anybody else very efficiently, the number of

ports, the number of wires increases n cubed. So that's a problem because you can't clock all

those wires fast enough. The frequency becomes sort of limited. It grows even less than

linearly. And this is a problem because operational routing-- operand routing, is global. So if I

have- I'm doing some operations and it's an add, the results of this add is fed to another

operation to shift, and these are going to execute on two different ALUs.

So what's going to happen? I do the add operation. It's going to produce a result. But there's

no direct path for this ALU to send this result to this ALU. So instead what has happened is the

operand has to travel all the way back around through the crossbar and then back to this ALU.

So that's really just going to take a long time and not necessarily very efficient. And if you're

doing this for a lot of ALU operations, you have a lot of parallelism in your application level,

instructional level parallelism, and that's just creating a lot of communication. But you're not

really exploiting the locality of the computation. If 2 instructions are really close together, you

want to be able to just have a point-to-point path, for example, or a shorter path that allows

you to exploit where was instructions are in space.

And so this was the driving insight for the architecture in that you want to make operand

routing local. So an idea is to essentially exploit this locality by distributing the ALUs. And

rather than having that massive crossbar, what you want to do is have an on-chip mesh

network. So rather than have one big crossbar, you have lots of smaller ones. So these

become switch processors. So I can put value from this ALU here and then have that value

routed to any other ALU. Maybe that just cost me more in terms of instructions that says

where this operand is going. We'll get into that.

But here, what this allows me to do is exploit that locality better. Same instruction chain, I can

put the first operation on one ALU, I can put the other operation on the second ALU. And here,

rather than putting it for example here, which would send the operand really far across chip,

what I want to do is recognize that there's a producer/consumer relationship here. I want to

exploit that locality and have them close in spaces so that the routes remain fairly short.

You know what I can also do is sort of pipeline this network so that I can have the hardware

essential match computation flow. If one ALU is producing a lot of results at a lot faster rate

than for example this instruction can consume them, then the hardware can take care of, for

example, blocking or stalling the producing processor so it doesn't get too far ahead. It gives

you a nature mechanism for regulating the flow data on the chip.

Well, this is better than what we saw before because with the crossbar you're not really getting

any scalability in terms of your latency transport operands from one ALU to another. Whereas

with on-chip network, if you've taken routing classes, you know that there exists an algorithm

that sort of allows it to route things at least the square root of n, where n is the number of

things that are communicating in your network.

But if you're doing locality driven placement then it's essentially costing time. And in a raw chip,

it's in fact three cycles. So you can send one operand from one tile to another in three cycles.

And we'll get into how that number comes about. So this is much better. But what it does is

increase the complexity on the compiler. It says, this is my computation, how do you map it

efficiently so that things are clustered in space well so that I don't have these really long routes

for communication?

But then we can look at what else can we distribute. Well, we have the register file. We can

distribute that across all the ALUs. And that essentially decreases that n cubed relationships

between ALUs and register file ports to something that's a lot more tractable. Where it's one

small register per ALU. And this is better in terms of scalability, but we haven't solved the

entire problem in that we still have one global program counter, we have one global instruction

fetch unit, one global control unified load/store queue for communicating with memory. And

those all have scalability problems. So whereas we fixed the problem with the crossbar-- that

becomes more scalable-- we haven't really fix the problems with the others.

So what's the natural solution to do here? Well, we'll just distribute everything else. And so you

start off with each ALU here now having it's own program counter, its own instruction cache,

it's own data cache. And it has its register file ALU and everybody-- that same sort of design

pattern is repeated for each one of those ALUs. So now it looks like it's a lot scalable. I don't

have any global wires. There's no global centralized data structure. And all of that means I can

do things more-- I can do things faster and more efficiently. And what you start seeing here is

this sort of tile processor coming about all. So each one of those things was exactly the same.

And what was done in the raw processor is that none of those tiles was longer than you can

communicate in one clock cycle. So this solved essentially a wire delay problem as well. So if

this is the distance that a wire-- that a signal can travel in one clock cycle, the tile is smaller. It

can fit within this circle. So that means that you're guaranteed-- you have better scalability

problems. You're solving the issues that people are facing with wire delay.

And in terms of the tile processor abstraction, Michael Taylor was is a PhD student in the raw

group, his thesis sort of identified the tile processor approach and this aspect of the tile

processor approach that makes it more attractive, the SON. Which is the scalar operand

network. And the next two slides, the next part of the lecture, is going to really focus on what

that means. He argues why the tile processor approach is scalable. And it's scalable for the

same reasons as multicores. You just add more and more cores on a chip. But the intrinsic

difference between the multicore that you see today and the raw architecture is the scalar

operand network.

So I'm going to ask you questions about this in a few slides. But really what you're getting here

is the ability to communicate from one processor to another very efficiently. And the way you

do this on raw is you have your instruction fetch d code, register file read stage, WALU-- your

competition pipeline. But part of the registers-- the new register file-- so 24 through 27 are

network mapped. So what that means is, if I write-- if one of the operations that I have in my

computation has a destination register that's 24, 25, 26 or 27, that value automatically get sent

to the output network. And if I have a value-- if one of my source operands is registered at 24,

25, 26 or 27, implicitly that means get that value off the network.

And so I can have add 25-- added to register 25-- so this is one of the network map ports, sum

two operands. So this is a picture of the raw chip. This is one tile. This is the other tile. So you

can sort of see the computation and the network switch processor here. So the operand flows

into the network and then gets transported across from one tile to the other. And then gets

injected into the other tiles compute networks. And here this instruction has sort a source

operand that that's register map operand. So it knows where to get its value from. And then

you can do the computation.

An interesting aspect here is that while you've seen instructions like this, just normal

instructions, here you also have explicit routing instructions that are executed on the switch

processor. So the switch processor here says take the value that's coming from my processor

and send it east. So each processor can send values east, west, north or south. So it can go

to the tile above it, the tile below it, the tile to the left of it or tile to the right of it.

And so sending it east sends it along this wire here. And then this particular switch processor

says get a value from the west port and send it to my processor. Now you could have had

here, this process could say, this value is not for me, so I want to just pass through to some

other processor. So you can pass it from the west port to the south port or to the north port or

just pass it through laterally to the other east port.

So it just allows you to essentially just have an on-chip network and not operand-- you can

imagine having an operand that has a data packet and header that's says, I'm going to tile 10

and the switches know which way to send it. But the interesting aspect here is that the

compiler actually orchestrates the communication, so you don't need that extra header that

says, I'm going to tile 10. You just have to generate a schedule of how to write that data

through. So we'll get into what that means for the compiler in terms of that added complexity.

So communication on multicores is expensive for the following reasons. And this is really sort

of going contrast or going to put the scalar operand network into slightly more perspective. But

first, so how do you communicate between multicores on the cell? You have the DMA

transfers from one SPE to another. You can't really ship an operand single value. So if I write

the value x, and I want to send x from one SPE to another, I can't really do that very efficiently,

right? So this is essentially the contrasting thing between multicore processors that largely

exist today and the raw processor. So I've shown you an empirical-- a quantitative-- an

analytical model for communication costs before in earlier slides.

This is an illustration of that concept. So if I have a processor that's talking to another, that

value has to travel across some network and there's some transport costs associated with

that. But there's also some added complexities. So there were lots of terms, if you remember,

in that really big equation I've shown before. You have some overhead in terms of packaging

the data. And you have some overhead in terms of unpacking the data. So what does that

look?

Well, there are two components we're going to break this down to: the send occupancy and

send latency. And I'm going to talk about each of those. And similarly on the receive side, you

have the receive latency and the receive occupancy. So bear in mind, this lifetime of a

message essentially has to flow through these five components. It has to go through the

occupancy stage, then there's the send latency, transport, receive latency and receive

occupancy before you can actually use it to compute on.

So what are some things that you do here? Well, it's things that you've done on cell for getting

VME transfers to work. You have to figure who the destination is, what is the value, maybe you

have an idea associated with it, a tag, things of that sort. And you have to essentially inject that

message into the network. So there's some latency associated with that. Maybe your-- on cell

you have a DMA engine which essentially hides this latency for you. Because you can

essentially just send the message to the DMA, right into its queue. And you can especially

forget about it unless it stalls because the DMA list is full.

On the receive side, you sort of have a similar thing. You have to get the network to inject that

value into the processor and then you have to depackage it, demultiplex it and put it into some

form that you can actually use to operate on it.

So this 5-tuple is gives us a way of sort of characterizing communication patterns on different

architectures. So I can contrast, for example, raw versus the traditional microprocessor. So

this is a traditional superscalar. A traditional superscalar essentially has all the sophisticated

circuitry that allows you to essentially bypass network. You can have an operand directly

flowing to another ALU through all the n squared wires in the crossbar. And a lot of dynamic

scheduling is going on. So it really has no occupancy, latency, you're not really doing any

packaging of the operands. Your transport cost is essentially completely hidden. You have no

complexity on the receive side. So it's really efficient. So this is essentially what you want to get

to go: this kind of 5-tuple. But as we saw before, it's really not scalable because the wire

complexity woes-- whether it's n squared or n cubed, that's not good from an energy efficient

point of view.

Scalable multiprocessors-- these are on-chip multiprocessors more indicative of things that

you have today-- have this kind of 5-tuple where you have about 16 cycles just to get a

message out, know roughly 3 cycles are so to transport message. So maybe this is being

done through a shared cache. Which is how a lot of architecture communicates between

processors today. And you have to sort of demultiplex the message on the receive side. So

that adds some latency.

In raw, because you have these net memory map registers on the input side and the output

side, you really can knock down the complexity from the send side in terms of the occupancy

and latency to zero. And you just write the values to the register. And it looks like a normal

register, right? But it just magically appears on the network. And then from one tile to another,

it's one cycle to ship the value across that one link from one switch processor to the other, as

long as it's a near neighbor. And then two cycles to inject the network into the tile processor.

And then you're ready to use it. So in this space, where would you put cell is the question?

Anybody have any ideas? What would the communication panel look like on cell?

So you have to do explicit sends and receives. So let's look at this. So can we get rid of this

stage on cell which is essentially saying packaging up my message, is it's no, right? Because

you have to essentially say where that DMA transfer is going to go to-- which region of

memory? So you're buildings these control blocks.

And then the send latency here is roughly zero, because you have the DMA processor which

allows that kind of concurrency between communication and computation, so you can hide

essentially that part of the transport-- that part of communication costs. Your transport costs

here, you have this really massive bandwidth, this really high bandwidth interconnect on the

chip. So this makes it reasonably fast, but it's still a few cycles. There's no near neighbor?

Yeah, a hundred cycles to go near neighbor communication. Because you're still-- you don't

have that fast mechanism of being able to send things points to point. You're putting things on

the bus and there's some complexity there.

On the receive, you have the same kind of complexity that you had on the send side. You

have to know that the message is coming, that can be done in different ways. And then you

have to take that message and write it into your local store. Which also adds some overhead

in terms of the communication cost. So the cell would probably be somewhere up here, I

would imagine. I didn't have a chance to get the numbers. If I do, I'll update the slide later on.

OK, so that's essentially a brief insight into the raw-- yeah?

AUDIENCE: Where did you get the scalable processor?

PROFESSOR

RABBAH:

So these are from Michael Taylor's thesis. So I believe what he's done here is just looked at

some existing microprocessor and essentially benchmarked communication latency from one

processor to another.

AUDIENCE: So this is like going through the cache on the [OBSCURED]?

PROFESSOR

RABBAH:

That's in fact how you-- a lot of these multiprocessors today have shared caches, either L-1

and more so now it's L-2. So if you have-- L-1s are dedicated to different processors. But you

still have to go the memory to communicate. So the raw parallelizing compiler-- yeah? Another

question?

AUDIENCE: You might want to postpone this question. Two related questions: so raw has-- I guess raw

has pretty well optimized nearest neighbor communication. But we know from, for example,

Red's Rule in heuristic and intellectual engineering about the number of wires needed for a

given area. Is that in between-- as I recall, it's the minimum for a good sized circuit is

proportional to the perimeter, or roughly the square root of the area. And it ranges from there

to-- not proportional to the area. There's something in between. Something with 3 in it. Like to

the 3/2 power I think, perhaps. No, something like 2/3rds, something like-- yeah, 2/3rds power.

So the area to the 1/2 power or area to the 2/3rds power. So Red's Rule says the number of

wires you need is roughly in that area.

And so that sort of pushes that-- so the minimum you need is the nearest communication. And

often you need more than that. We know from the FPGA experience that nearest neighbor

communication is not-- or, at least, it's good to have move than nearest neighbor, and that

often long wires followed across the chip, in extremely high--

PROFESSOR

RABBAH:

So I'm going to actually show you an example where nearest neighbor is good but you might

also want some global mechanism for control orchestration for example.

AUDIENCE: Not just for con-- not surely just for control but for broadcast, for arbitrary for the computation

to use, not just for the chip to use. Like why are you scaling out two hops, four hops, fewer and

fewer wire--

PROFESSOR

RABBAH:

Yes, in fact what I think is going to happen is a lot of these chip designs are going to be

heirarchical. You have some really global type communication at the highest level. And then as

you get within each one of the processors, then you see things at the lowest level, something

that looked like raw. So you can build sort of a hierarchy of communication stages that allow

you to sort of solve that problem. But all of that adds complexity, right? First you have to solve

the problem of how do you parallelize for just a fixed number of cores and then figure out the

communications. Once we understand how to do that well with a nice programming model

then you can build heirarchically on that.

AUDIENCE: On the other hand, it might make the compiler's job easier because it's not as constrained.

PROFESSOR

RABBAH:

It might give you a nice fall back rate. It might save you in cases where there are things that

are hard to do. There are some issues in the last two-- the second to the last three slides.

We'll talk about an example of where that might be the case.

AUDIENCE: Another question which [OBSCURED] so raw, I guess, being simpled and tiled, I guess one of

the selling points I think was that it really cuts down on the engineering effort.

PROFESSOR

RABBAH:

Oh, absolutely. This was done a million gates in-house for [OBSCURED]

AUDIENCE: So a company like Intel has a ridiculous number of engineers. And to get a competitive edge,

they something they want to apply more engineering to it. And so the question is, where might

you apply more engineering to try to squeeze more--

PROFESSOR That's the million dollar question that everybody's looking at. Because if somehow Intel

AMARASINGHE: thought they could add more and more engineering. And then build this very complex full-

scale [OBSCURED] But separate vessels. And so I think there's still a lot of things that is

wrong. Meaning it's [OBSCURED] so at Intel basically they will let you do something like that.

They will put a lot of engineers doing each of these components, finding very few, and they

can get a lot more performance, a lot less power and stuff like that. So depending on what you

want, science is not everything. There are a lot of other things [OBSCURED] So while it makes

it easier? [OBSCURED] And the key thing is, you start something simple and as you go on,

you can add more and more complexity. Just, as there's more things to do.

PROFESSOR

RABBAH:

Part of the complexity might be going to-- not making all those [OBSCURED]. OK, so raw

pushes a lot of the complexity into the compiler in that the compiler now has to do at least two

things. It has to distribute the instructions. You have a single program and you have to figure

out how to parallelize it across multiple cores. But not only that, because you have the scalar

operand network, you have to figure out how the different cores have to talk to each other. So

you have to essentially generate schedule for the switch processors as well.

So I'm going to talk a little bit about the raw paralyzing compiler. And this is different from a

StreamIT parallelizing compiler which really talks about a different program as an input, using

a different language. This is work again done here at MIT by Walter Lee who graduated two

years ago. We have a sequential program. You inject it into raw C seed, raw C compiler, and

you get fine-grained Orchestrated Parallel execution. And what the compiler does is worry

about data distribution just like you have to do on cell in terms of which memory goes into

which local store. which competition operates on-- the raw compiler has to worry about which

computation operates on which data element and can you put that data in the right caches for

each of the different tiles.

Instruction distribution: so the way this compiler essentially get parallelism, it's going to look at

instruction level parallelism in your application. And it's going to divide that up among the

different cores. And then the last step is the coordination of communication in control flow. So

I'm just going to briefly step through each one of those.

So the data distribution really has essentially trying to solve the problem of locality. You have

two instructions. A load into r1 from some address and then you're adding r1. You're

incrementing that value. And you might write it back for later on.

So where would you put these two instructions? So to exploit the locality, then you want the

data-- if the data is here, then you want these two instructions to be on this tile. If the data is

here, then you want these two instructions to be on this file. Because it doesn't help you to

have the data here and the instructions here. Because what do you have to do in that case?

You have to send a message that says, send me this data. And then you have to wait for it to

come in and then you have to operate on it. And then maybe you have to write it back.

So the compiler sort of worries about the data distribution. It applies some data analysis. A lot

of a thing that you saw in Saman's lecture on classic parallelization technology. Sort of figure

out the interdependencies and then they can figure out how to split up the data across the

different cores. And there's some other work done by other students in the group that tried to

address this problem.

The instruction distribution is perhaps as complicated and interesting. In here, what's going on

is-- let's say you have a base block. So you take your sequential program. You figure out what

are the different basic blocks of computation that you have and within the basic block you have

lots of instructions. So each one of these green boxes is a particular instruction. And what

you're seeing-- these arrows here that connect the edges-- are operands that you have to

exchange. So you might have-- this is an add instruction. It requires a value coming from here.

Multiply-- subtract instruction requires values coming in from different areas. So how would

you distribute this across a number of cores-- or across a number of tiles? Any ideas here?

So you can look for, for example, some chains that are not interconnected. So you can look for

clusters that you can use. And say, OK, well I see no edges here so maybe I can put this on

one tile. And then maybe I can put some of these instructions on another tile. Because sort of

the communication flow is local. So maybe one strategy might be, look for the longest single

chains so you can keep the communication flow. And then you apply and make and algorithm,

come up with a number of clusters.

Something like that does happen. And keep in mind from the lectures we talked about the

parallelizing compiler, you have to worry about parallelism versus communication. Some the

more you distribute things, the more communication you have to get right. So here we're

showing-- what I'm showing is color mapping from the original instructions in the base block to

the same instructions, but now each color essential represents a different cluster or essentially

code that would map a different thread. So blue is one thread, yellow is another, green is

another, red, purple, and so on. But I have to worry about communication between the

different colors because they're essentially two different threads. They're going to run on two

different processors or two different tiles. So those arrows that are highlighted in dark black

are communication edges. They have to explicitly send the operands around. Right?

So then I might look at the granularity. What is my communication cost? What is my

computation cost? And I want to worry about load balancing. As we saw, load balancing can

give you how it can better make use of your architecture and give you better utilization, better

throughput. So you might essentially say, it doesn't-- it's not worthwhile to have these running

on a different tile because there's a lot of communication going on. So maybe I'd want to fuse

those together. Keep the communication local. And essentially eliminate costly communication.

So there are different heuristics that you can apply. You can use that 5-tuple. You can use

heuristic space on the 5-tuple to determine when it's profitable to break things up and when it's

not.

And then you have to worry about placement. So you don't quite have this on cell in that you

create these SPE threads and they can run on any SPE in the raw compiler. You can actually

exploit the spacial characteristics of the chip in the point-to-point communication network to

say, I want to put these two threads on tile 1 and tile 2, where tile 1 and tile 2 are adjacent to

each other. Because I have a well-defined communication pattern that I'm going to use. And

map to the communication network on the chip to get really fast, really low latency.

So you can take each one of these colors, place it on a different tile. And now you have these

wires that are going across these tiles which essentially represent communication. But now the

tile has to worry about, oh, I have to essentially send these on fixed routes. There's no

arbitrary communication mechanism. So if there's data going from this tile to this tile, it actually

has to be routed through a network. And that might mean getting routing through somebody

else's tile.

So the next stage would be communication coordination. You have to figure out which switch

you need to go to and what do you do to get that operand to the right switch which then gets it

to the right processor. So here, I believe the heuristic is to do dimension order routing so you

send along the x-dimension and then the y-dimension. I might have those reversed. I don't

know.

And then finally, now you've figured out your communication patterns, you've figured out your

instructions, you do some instructions scheduling. And what you can do here, because the

communication patterns are static, you've split up the instructions so you know when you need

to ship data around and how. You can guarantee deadlock freedom by carefully ordering your

send and receive pairs. So what you see here, every time you see an instruction that needs to

ship an operand around, there's the equivalent of a route instruction that has route east, west,

north, south. There's an equivalent route instruction on the other processors. And that allows

you to essentially analyze code and say, OK, I've laid these things out carefully, I've

orchestrated my send and receive pairs so I can guarantee, for example, there are no

overlapping routes. Or that there are no deadlocks because one is trying to shift the other

while the other is also trying to ship, and they both block on the shared network link. And

finally, you have the code representation. So this is where you package things up into object

files, into essentially things like threads. And then you can compile them and run them.

Now the question that was posed earlier is, well there's one thing we haven't talked about and

that's branching. This is a sequential program, it executes branches. And now I have this loop

that I've split up across a number of tiles, how do I know who's going to do the branch? And if

one tile is doing the branch, how does it communicate with everybody else? Or if I'm going to

repeat the branch on every file, does that mean I'm redoing too much computation on every

other tile? So control coordination is actually quite an interesting aspect of-- adds another

interesting aspect to the parallelization for raw.

So what you have to do is figure out-- there are two different ways you can do it. Because you

have no mechanism for a global message on raw, you can't say, I've taken a branch,

everybody go to this program counter. You essentially have to send either the branch result so

one tile can do the comparison, it calculates the condition, and then it has to communicate x to

each of the different branches-- to each of the different tiles. Or every tiles has to essentially

just replicate the control and redo the computations. So every tile figures out what is the

condition, what are the conditions for the branch. They redundantly do that computation and

then they can all merge at the same time-- at different times.

So that gives you two ways of doing the branching. If each tile's doing its own control flow

calculation, then they can essentially branch at different times. But if they're all going to wait

for the result to compare, then it essentially gives you points where you have to synchronize.

Everybody's going to wait for the result of the branch. But the latency could be different.

Because if I'm sending the branch condition to one tile versus another file, and if one's closer

than the other. Then the branch that's closer to me-- the tile that's closer to me will take that

branch earlier in time. So you get sort of the effective of a global asynchronous branching in

either case. Does that make sense? So, in summary, the raw architecture is really a tile

microprocessor. It incorporates the best elements from superscalars in terms of a really low

latency communication network between tiles which really cuts down on the communication

costs. And as we saw, and as probably you've been learning, communication is really an

expensive part of parallelization on existing multicore chips. And it's also getting the scalability

of multicores in terms of explicit parallelism but also gives you implicit parallelism because the

networks are pipelined and they can give you full control.

So you're trying to get to the point where you have a tile processor with scalar operand

network that allows you to do communication with a very low cost. And it might be the case in

the future that these chips will especially be-- more complex architectures will sit on top of

these so you'll use these as fundamental building blocks. And there was the 80 chip multicore

from Intel: there have been rumors that that might actually be something like a graphics

processor that has something like a scalar operand network because you could communicate

with a very fast-- with very low latency between tiles.

And in that article which came out a few months ago was the first time I think that I had seen

tile architectures used in literature or in publications. So I think you'll see more of these kinds

of designs pattern appear as people scale out to more than 2 cores, 4 cores, 8 cores and so

on, where you could still communication reasonably well with caches.

And that's all I prepared for today. Any other questions? And this is a list of people who

contributed to the raw project. A lot of students who are led by Anant and Saman.

PROFESSOR AMARASINGHE: [OBSCURED] view of what happened in our groups and then

how it relates to necessary to what you need. But this is trying to take it to a much finer grain.

Whereas in Cell, of course, the message has to be large, you can do a lot of coarse grain

stuff. But in raw, you try to do much more fine grain stuff. But we're going to talk about it the

next lecture on the future. [OBSCURED]

AUDIENCE: [OBSCURED] Don't you need long wires for the clock.

PROFESSOR

RABBAH:

There's no global clock.

AUDIENCE: So you have this network that seems to -- So that the network actually requires handshaking?

Or--

PROFESSOR

AMARASINGHE:

The way you can do is, you can in modern processors, [OBSCURED] so since there's no long

wire, you can actually carry the clock with the data. So in the global world, the switching here

would happen when the switching here. But since there's no big wire connecting, then that's

OK. So you can deal with clock ticking.

AUDIENCE: So this is not going to be not clock drift because--

PROFESSOR

AMARASINGHE:

Yeah, that's clock drift. One end of the process clock is happening at the global instant time at

the other end of the processor. And since the wires also kind of go in the tree, you can deal

with that.

AUDIENCE: Drift meaning ticking at different rates, not just--

PROFESSOR

AMARASINGHE:

Yeah, I know. Basically I don't think I can go back to it. It has a skew. There's a clock skew

going in between those.

AUDIENCE: So you don't need synchronizers between the different tiles?

PROFESSOR

AMARASINGHE:

No, we don't need synchronizers because tiles are local. The clock would bring those tiles.

The clock would bring two things that communicate close enough that it fits it in the cycle. But

for example, if you get it two very far away branches of a tree and then if you try to

communicate with them then you have a problem. Another thing is when the tree goes here,

you want to use two different branches it's similar to going down. So you can compress the

process. So there are all these things. I mean, modern processors really really destable. The

problem occurs when you try to connect directly from the far end of the branch to something

that gets clocked there to something that clocks at a very early end of the branch. If you're

trying to connect those two, then the skew might be too long. Then you can get into clock

trouble.

AUDIENCE: [OBSCURED] I was just worried about this local network. [OBSCURED]

AUDIENCE: Another question I had was in the mesh, obviously the processors in the middle have further to

get to the I/O devices or to the main memory. What do you see happening as you get to larger

and larger processors? Are they going to just put more and more local memory on the tile and

[OBSCURED] it, or are they going to add extra memory buses on it?

PROFESSOR

RABBAH:

It could be a combination of both. So it's not just memory, I/O devices. If you're doing I/O then

you might to be placed at a part of the chip that has direct access to an I/O device or very

close. It also comes up in the case of the communication orchestration. So if this guy is doing

the branch then you want him essentially centrally located. So the best patterns for allocating

things is essentially across. It's like a plus sign where it branches in the middle.

PROFESSOR

AMARASINGHE:

But that's not [OBSCURED]. You can make them uniform by everybody equally there. And a

lot of times people have done that simple model with everybody equally there Or you try to

take advantage of closeness and stuff like that. So you can't have both ways. So anytime you

try to make me [OBSCURED] very, very close and fast access, you're are doing it by basically

making the other parts to have less resources and less access. On the other hand, there are a

lot of people working on [INAUDIBLE] things that, for example, there's a thing called tree

space laser. So what that does is you put a mirror on top of the tile, on top of the processor.

And each of these-- you can embed a small LED transmitter into the chip. So basically if you

want to communicate with someone, you just bounce that laser on top of that and get it to the

right guy.

So there are a lot of exotic things that might be able to solve this thing, technological problem.

But in some case, speed of light-- I don't think an engineer has figured out how to break speed

of light. Unless, of course, people go with quantum computing and stuff like that.

So, I mean the key thing is, you have resources, you have certain data and you just have to

deal with it. Getting nice uniformity has a cost.

PROFESSOR

RABBAH:

Yeah, I mean, on the [OBSCURED] that are groups here at MIT who are working on optical

networks in the third dimension. So you have a tile chip plus an optical network in the third

dimension which allows you to do things like broadcast much more efficiently. OK?

PROFESSOR

AMARASINGHE:

I guess we'll take a break here and take a small, three-minute break and then we can go on to

the next topic.

