6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

- The basic problem
- Principle of optimality
- DP example: Deterministic problem
- DP example: Stochastic problem
- The general DP algorithm
- State augmentation

BASIC PROBLEM

- System $x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right), k=0, \ldots, N-1$
- Control constraints $u_{k} \in U_{k}\left(x_{k}\right)$
- Probability distribution $P_{k}\left(\cdot \mid x_{k}, u_{k}\right)$ of w_{k}
- Policies $\pi=\left\{\mu_{0}, \ldots, \mu_{N-1}\right\}$, where μ_{k} maps states x_{k} into controls $u_{k}=\mu_{k}\left(x_{k}\right)$ and is such that $\mu_{k}\left(x_{k}\right) \in U_{k}\left(x_{k}\right)$ for all x_{k}
- Expected cost of π starting at x_{0} is

$$
J_{\pi}\left(x_{0}\right)=E\left\{g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}
$$

- Optimal cost function

$$
J^{*}\left(x_{0}\right)=\min _{\pi} J_{\pi}\left(x_{0}\right)
$$

- Optimal policy π^{*} is one that satisfies

$$
J_{\pi^{*}}\left(x_{0}\right)=J^{*}\left(x_{0}\right)
$$

PRINCIPLE OF OPTIMALITY

- Let $\pi^{*}=\left\{\mu_{0}^{*}, \mu_{1}^{*}, \ldots, \mu_{N-1}^{*}\right\}$ be optimal policy
- Consider the "tail subproblem" whereby we are at x_{i} at time i and wish to minimize the "cost-togo" from time i to time N

$$
E\left\{g_{N}\left(x_{N}\right)+\sum_{k=i}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}
$$

and the "tail policy" $\left\{\mu_{i}^{*}, \mu_{i+1}^{*}, \ldots, \mu_{N-1}^{*}\right\}$

- Principle of optimality: The tail policy is optimal for the tail subproblem (optimization of the future does not depend on what we did in the past) - DP first solves ALL tail subroblems of final stage
- At the generic step, it solves ALL tail subproblems of a given time length, using the solution of the tail subproblems of shorter time length

DETERMINISTIC SCHEDULING EXAMPLE

- Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

- Start from the last tail subproblem and go backwards
- At each state-time pair, we record the optimal cost-to-go and the optimal decision

STOCHASTIC INVENTORY EXAMPLE

- Tail Subproblems of Length 1:

$$
\begin{aligned}
& J_{N-1}\left(x_{N-1}\right)=\min _{u_{N-1} \geq 0} \underset{w_{N-1}}{E}\left\{c u_{N-1}\right. \\
&\left.+r\left(x_{N-1}+u_{N-1}-w_{N-1}\right)\right\}
\end{aligned}
$$

- Tail Subproblems of Length $N-k$:

$$
\begin{gathered}
J_{k}\left(x_{k}\right)=\min _{u_{k} \geq 0} E\left\{c u_{k}+r\left(x_{k}+u_{k}-w_{k}\right)\right. \\
\left.+J_{k+1}\left(x_{k}+u_{k}-w_{k}\right)\right\}
\end{gathered}
$$

- $J_{0}\left(x_{0}\right)$ is opt. cost of initial state x_{0}

DP ALGORITHM

- Start with

$$
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right),
$$

and go backwards using

$$
\begin{aligned}
J_{k}\left(x_{k}\right) & =\min _{u_{k} \in U_{k}\left(x_{k}\right)} \underset{w_{k}}{E}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right. \\
& \left.+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}, \quad k=0,1, \ldots, N-1 .
\end{aligned}
$$

- Then $J_{0}\left(x_{0}\right)$, generated at the last step, is equal to the optimal cost $J^{*}\left(x_{0}\right)$. Also, the policy

$$
\pi^{*}=\left\{\mu_{0}^{*}, \ldots, \mu_{N-1}^{*}\right\}
$$

where $\mu_{k}^{*}\left(x_{k}\right)$ minimizes in the right side above for each x_{k} and k, is optimal

- Justification: Proof by induction that $J_{k}\left(x_{k}\right)$ is equal to $J_{k}^{*}\left(x_{k}\right)$, defined as the optimal cost of the tail subproblem that starts at time k at state x_{k}
- Note:
- ALL the tail subproblems are solved (in addition to the original problem)
- Intensive computational requirements

PROOF OF THE INDUCTION STEP

- Let $\pi_{k}=\left\{\mu_{k}, \mu_{k+1}, \ldots, \mu_{N-1}\right\}$ denote a tail policy from time k onward
- Assume that $J_{k+1}\left(x_{k+1}\right)=J_{k+1}^{*}\left(x_{k+1}\right)$. Then

$$
\begin{aligned}
& J_{k}^{*}\left(x_{k}\right)=\min _{\left(\mu_{k}, \pi_{k+1}\right)} \underset{w_{k}, \ldots, w_{N-1}}{E}\left\{g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right. \\
& \left.\quad+g_{N}\left(x_{N}\right)+\sum_{i=k+1}^{N-1} g_{i}\left(x_{i}, \mu_{i}\left(x_{i}\right), w_{i}\right)\right\} \\
& =\min _{\mu_{k}} \underset{w_{k}}{E}\left\{g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right. \\
& \left.+\min _{\pi_{k+1}}\left[\underset{w_{k+1}, \ldots, w_{N-1}}{E}\left\{g_{N}\left(x_{N}\right)+\sum_{i=k+1}^{N-1} g_{i}\left(x_{i}, \mu_{i}\left(x_{i}\right), w_{i}\right)\right\}\right]\right\} \\
& =\min _{\mu_{k}}^{E} \underset{w_{k}}{E}\left\{g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)+J_{k+1}^{*}\left(f_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right)\right\} \\
& =\min _{\mu_{k}}^{E} \underset{w_{k}}{E}\left\{g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right)\right\} \\
& =\min _{u_{k} \in U_{k}\left(x_{k}\right)}^{E} \underset{w_{k}}{E}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\} \\
& =J_{k}\left(x_{k}\right)
\end{aligned}
$$

LINEAR-QUADRATIC ANALYTICAL EXAMPLE

- System

$$
x_{k+1}=(1-a) x_{k}+a u_{k}, \quad k=0,1,
$$

where a is given scalar from the interval $(0,1)$

- Cost

$$
r\left(x_{2}-T\right)^{2}+u_{0}^{2}+u_{1}^{2}
$$

where r is given positive scalar

- DP Algorithm:

$$
\begin{gathered}
J_{2}\left(x_{2}\right)=r\left(x_{2}-T\right)^{2} \\
J_{1}\left(x_{1}\right)=\min _{u_{1}}\left[u_{1}^{2}+r\left((1-a) x_{1}+a u_{1}-T\right)^{2}\right] \\
J_{0}\left(x_{0}\right)=\min _{u_{0}}\left[u_{0}^{2}+J_{1}\left((1-a) x_{0}+a u_{0}\right)\right]
\end{gathered}
$$

STATE AUGMENTATION

- When assumptions of the basic problem are violated (e.g., disturbances are correlated, cost is nonadditive, etc) reformulate/augment the state
- DP algorithm still applies, but the problem gets BIGGER
- Example: Time lags

$$
x_{k+1}=f_{k}\left(x_{k}, x_{k-1}, u_{k}, w_{k}\right)
$$

- Introduce additional state variable $y_{k}=x_{k-1}$. New system takes the form

$$
\binom{x_{k+1}}{y_{k+1}}=\binom{f_{k}\left(x_{k}, y_{k}, u_{k}, w_{k}\right)}{x_{k}}
$$

View $\tilde{x}_{k}=\left(x_{k}, y_{k}\right)$ as the new state.

- DP algorithm for the reformulated problem:

$$
\begin{aligned}
J_{k}\left(x_{k}, x_{k-1}\right)= & \min _{u_{k} \in U_{k}\left(x_{k}\right)} \underset{w_{k}}{E}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right. \\
& \left.+J_{k+1}\left(f_{k}\left(x_{k}, x_{k-1}, u_{k}, w_{k}\right), x_{k}\right)\right\}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

