
6.231 DYNAMIC PROGRAMMING

LECTURE 8

LECTURE OUTLINE

• Suboptimal control

• Cost approximation methods: Classification

• Certainty equivalent control: An example

• Limited lookahead policies

• Performance bounds

• Problem approximation approach

• Parametric cost-to-go approximation

1

PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

− Intractability of imperfect state information
problems

• The curse of modeling

− Mathematical models

− Computer/simulation models

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning

2

COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re-
placed by an approximation J̃k+1. (Sometimes E gk
is also replaced by an approximation.)

{ }

• Apply µk(xk), which attains the minimum in

˜min E
{

gk(xk, uk, wk) + Jk+1

(

fk(xk, uk, wk)
u ∈U (x)k k k

• There are several ways to compute J̃

)

}

k+1:

− Off-line approximation: The entire function
J̃k+1 is computed for every k, before the con-
trol process begins.

− On-line approximation: Only the values J̃k+1(xk+1)
at the relevant next states xk+1 are com-
puted and used to compute uk just after the
current state xk becomes known.

− Simulation-based methods: These are off-
line and on-line methods that share the com-
mon characteristic that they are based on
Monte-Carlo simulation. Some of these meth-
ods are suitable for are suitable for very large
problems.

3

CERTAINTY EQUIVALENT CONTROL (CEC)

• Idea: Replace the stochastic problem with a
deterministic problem

• At each time k, the future uncertain quantities
are fixed at some “typical” values

• On-line implementation for a perfect state info
problem. At each time k:

(1) Fix the wi, i ≥ k, at some wi. Solve the
deterministic problem:

N−1

minimize gN (xN) +
∑

gi
i=k

(

xi, ui, wi

where xk is known, and

)

ui ∈ Ui, xi+1 = fi
(

xi, ui, wi .

(2) Use the first control in the opti

)

mal control
sequence found.

• Equivalently, we apply µ̄k(xk) that minimizes

gk
(

xk, uk, wk

)

+ J̃k+1

(

fk(xk, uk, wk)

where J̃k+1 is the optimal cost of the corr

)

espond-
ing deterministic problem.

4

EQUIVALENT OFF-LINE IMPLEMENTATION

• Let
{

µd
0(x0), . . . , µ

d
N−1(xN−1) be an optimal con-

troller obtained from the DP a
terministic problem

}

lgorithm for the de-

N−1

minimize gN (xN) +
∑

gk

k=0

(

xk, µk(xk), wk

subject to x

)

k+1 = fk
(

xk, µk(xk), wk , µk(xk) ∈ Uk

• The CEC applies at time k th

)

e control input
µd
k(xk).

• In an imperfect info version, xk is replaced by
an estimate xk(Ik).

5

PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their
typical values, fix only some, and treat the rest as
stochastic.

• Important special case: Treat an imperfect state
information problem as one of perfect state infor-
mation, using an estimate xk(Ik) of xk as if it were
exact.

• Multiaccess communication example: Consider
controlling the slotted Aloha system (Example 5.1.1
in the text) by optimally choosing the probabil-
ity of transmission of waiting packets. This is a
hard problem of imperfect state info, whose per-
fect state info version is easy.

• Natural partially stochastic CEC:

1
µ̃k(Ik) = min

[

1,
xk(Ik)

]

,

where xk(Ik) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which is Ik).

6

GENERAL COST-TO-GO APPROXIMATION

• One-step lookahead (1SL) policy: At each k
and state xk, use the control µk(xk) that

min E
{

˜gk(xk, uk, wk) + Jk+1

(

fk(xk, uk, wk)
u ∈U (x)k k k

)}

,

where
˜− JN = gN .

− J̃k+1: approximation to true cost-to-go Jk+1

• Two-step lookahead policy: At each k and
xk, use the control µ̃k(xk) attaining the minimum
above, where the function J̃k+1 is obtained using a
1SL approximation (solve a 2-step DP problem).

• If J̃k+1 is readily available and the minimiza-
tion above is not too hard, the 1SL policy is im-
plementable on-line.

• Sometimes one also replaces Uk(xk) above with
a subset of “most promising controls” Uk(xk).

• As the length of lookahead increases, the re-
quired computation quickly explodes.

7

PERFORMANCE BOUNDS FOR 1SL

• Let Jk(xk) be the cost-to-go from (xk, k) of the
1SL policy, based on functions J̃k.

• Assume that for all (xk, k), we have

ˆ ˜Jk(xk) ≤ Jk(xk), (*)

where ĴN = gN and for all k,

Ĵk(xk) = min E gk(xk, uk, wk)
u ∈U (x)k k k

{

+ J̃k+1 fk(xk, uk, wk) ,

[so Ĵk(xk) is computed along w

(

ith

)}

µk(xk)]. Then

ˆJk(xk) ≤ Jk(xk), for all (xk, k).

• Important application: When J̃k is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

• The bound can be extended to the case where
there is a δk in the RHS of (*). Then

Jk(xk) ≤ J̃k(xk) + δk + · · ·+ δN−1

8

COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Uk(xk) is not a discrete set]. Con-
nection with stochastic programming (2-stage DP)
methods (see text).

• The choice of the approximating functions J̃k

is critical, and is calculated in a variety of ways.

• Some approaches:

(a) Problem Approximation: Approximate the
optimal cost-to-go with some cost derived
from a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Ap-
proximate the optimal cost-to-go with a func-
tion of a suitable parametric form, whose pa-
rameters are tuned by some heuristic or sys-
tematic scheme (Neuro-Dynamic Program-
ming)

(c) Rollout Approach: Approximate the opti-
mal cost-to-go with the cost of some subop-
timal policy, which is calculated either ana-
lytically or by simulation

9

PROBLEM APPROXIMATION

• Many (problem-dependent) possibilities

− Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

− Simplify difficult constraints or dynamics

• Enforced decomposition example: Route m ve-
hicles that move over a graph. Each node has a
“value.” First vehicle that passes through the node
collects its value. Want to max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

• 1SL scheme: At time k and state xk (position
of vehicles and “collected value nodes”), consider
all possible kth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time

10

PARAMETRIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a para-
metric class J̃(x, r) where x is the current state
and r = (r1, . . . , rm) is a vector of “tunable” scalars
(weights).

• By adjusting the weights, one can change the
“shape” of the approximation J̃ so that it is rea-
sonably close to the true optimal cost-to-go func-
tion.

• Two key issues:

− The choice of parametric class J̃(x, r) (the
approximation architecture).

− Method for tuning the weights (“training”
the architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• Sometimes a simulation-based algorithm is used,
particularly when there is no mathematical model
of the system.

• We will look in detail at these issues after a few
lectures.

11

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(x, r) on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

• Linear feature-based architecture: φ = (φ1, . . . , φm)

m

J̃(x, r) = φ(x)′r =
∑

φj(x)rj
j=1

i Feature Extraction Mapping Feature Vector
Approximator ()Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

i) Linear Cost

i) Linear Cost
State x x Feature Vector φ(x)) Approximator φ(x)′r

• Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture

• Anything sensible can be used as features. Some-
times the state space is partitioned, and “local”
features are introduced for each subset of the par-
tition (they are 0 outside the subset)

12

AN EXAMPLE - COMPUTER CHESS

• Chess programs use a feature-based position
evaluator that assigns a score to each move/position

Feature
Extraction

Weighting
of Features

Features:
Material balance,
Mobility,
Safety, etc Score

Position Evaluator

• Many context-dependent special features.

• Most often the weighting of features is linear
but multistep lookahead is involved.

• Most often the training is done “manually,” by
trial and error.

13

Image by MIT
OpenCourseWare.

ANOTHER EXAMPLE - AGGREGATION

• Main elements (in a finite-state context):

− Introduce “aggregate” states S1, . . . , Sm, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states (using so
called “aggregation and disaggregation prob-
abilities”)

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of method (in-
cluding simulation-based) ... more on this
later.

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of each
original problem state as a linear combina-
tion of the optimal aggregate state costs

• This is a linear feature-based architecture (the
optimal aggregate state costs are the features)

• Hard aggregation example: Aggregate states
Sj are a partition of original system states (each
original state belongs to one and only one Sj).

14

AN EXAMPLE: REPRESENTATIVE SUBSETS

• The aggregate states Sj are disjoint “represen-
tative” subsets of original system states

y3

1

x 1

2

}

}

4

5

6
7

2

• Common case: Each Sj is a group of states with
“similar characteristics”

• Compute a “cost” rj for each aggregate state
Sj (using some method)

• Approximate the optimal cost of each original
system state x with m

φxjrjj=1

• For each x, the φ

∑

xj , j = 1, . . . ,m, are the “ag-
gregation probabilities” ... roughly the degrees of
membership of state x in the aggregate states Sj

• Each φxj is prespecified and can be viewed as
the jth feature of state x

15

y3

1

x 1

2

}

}

4

5

6
7

2

y3 Original State Space

Aggregate States/Subsets
0 1 2 49

x S

φx1

1 φx2

x S1 1 S2

2 S3

}

S4

}

4 S5

5 S6

6 S7
7 S8

2 φx6

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

