6.231 DYNAMIC PROGRAMMING

LECTURE 8

LECTURE OUTLINE

- Suboptimal control
- Cost approximation methods: Classification
- Certainty equivalent control: An example
- Limited lookahead policies
- Performance bounds
- Problem approximation approach
- Parametric cost-to-go approximation

PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

- Exponential growth of the computational and storage requirements as the number of state variables and control variables increases
- Quick explosion of the number of states in combinatorial problems
- Intractability of imperfect state information problems
- The curse of modeling
 - Mathematical models
 - Computer/simulation models
- There may be real-time solution constraints
 - A family of problems may be addressed. The data of the problem to be solved is given with little advance notice
 - The problem data may change as the system is controlled – need for on-line replanning

COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equation where the optimal cost-to-go function J_{k+1} is replaced by an approximation \tilde{J}_{k+1} . (Sometimes $E\{g_k\}$ is also replaced by an approximation.)

• Apply $\overline{\mu}_k(x_k)$, which attains the minimum in

$$\min_{u_k \in U_k(x_k)} E\left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1} \left(f_k(x_k, u_k, w_k) \right) \right\}$$

- There are several ways to compute \tilde{J}_{k+1} :
 - Off-line approximation: The entire function \tilde{J}_{k+1} is computed for every k, before the control process begins.
 - On-line approximation: Only the values $\tilde{J}_{k+1}(x_{k+1})$ at the relevant next states x_{k+1} are computed and used to compute u_k just after the current state x_k becomes known.
 - Simulation-based methods: These are offline and on-line methods that share the common characteristic that they are based on Monte-Carlo simulation. Some of these methods are suitable for are suitable for very large problems.

CERTAINTY EQUIVALENT CONTROL (CEC)

• Idea: Replace the stochastic problem with a deterministic problem

- At each time k, the future uncertain quantities are fixed at some "typical" values
- On-line implementation for a perfect state info problem. At each time k:
 - (1) Fix the w_i , $i \ge k$, at some \overline{w}_i . Solve the deterministic problem:

minimize
$$g_N(x_N) + \sum_{i=k}^{N-1} g_i(x_i, u_i, \overline{w}_i)$$

where x_k is known, and

$$u_i \in U_i, \quad x_{i+1} = f_i(x_i, u_i, \overline{w}_i).$$

- (2) Use the first control in the optimal control sequence found.
- Equivalently, we apply $\bar{\mu}_k(x_k)$ that minimizes

$$g_k(x_k, u_k, \overline{w}_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, \overline{w}_k))$$

where \tilde{J}_{k+1} is the optimal cost of the corresponding deterministic problem.

EQUIVALENT OFF-LINE IMPLEMENTATION

• Let $\{\mu_0^d(x_0), \ldots, \mu_{N-1}^d(x_{N-1})\}$ be an optimal controller obtained from the DP algorithm for the deterministic problem

minimize
$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), \overline{w}_k)$$

subject to $x_{k+1} = f_k(x_k, \mu_k(x_k), \overline{w}_k), \quad \mu_k(x_k) \in U_k$

• The CEC applies at time k the control input $\mu_k^d(x_k)$.

• In an imperfect info version, x_k is replaced by an estimate $\overline{x}_k(I_k)$.

PARTIALLY STOCHASTIC CEC

• Instead of fixing *all* future disturbances to their typical values, fix only some, and treat the rest as stochastic.

• Important special case: Treat an imperfect state information problem as one of perfect state information, using an estimate $\overline{x}_k(I_k)$ of x_k as if it were exact.

• Multiaccess communication example: Consider controlling the slotted Aloha system (Example 5.1.1 in the text) by optimally choosing the probability of transmission of waiting packets. This is a hard problem of imperfect state info, whose perfect state info version is easy.

• Natural partially stochastic CEC:

$$\tilde{\mu}_k(I_k) = \min\left[1, \frac{1}{\overline{x}_k(I_k)}\right],$$

where $\overline{x}_k(I_k)$ is an estimate of the current packet backlog based on the entire past channel history of successes, idles, and collisions (which is I_k).

GENERAL COST-TO-GO APPROXIMATION

• One-step lookahead (1SL) policy: At each k and state x_k , use the control $\overline{\mu}_k(x_k)$ that

 $\min_{u_k \in U_k(x_k)} E\{g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k))\}\},\$

where

 $- \tilde{J}_N = g_N.$

- \tilde{J}_{k+1} : approximation to true cost-to-go J_{k+1}

• Two-step lookahead policy: At each k and x_k , use the control $\tilde{\mu}_k(x_k)$ attaining the minimum above, where the function \tilde{J}_{k+1} is obtained using a 1SL approximation (solve a 2-step DP problem).

• If \tilde{J}_{k+1} is readily available and the minimization above is not too hard, the 1SL policy is implementable on-line.

• Sometimes one also replaces $U_k(x_k)$ above with a subset of "most promising controls" $\overline{U}_k(x_k)$.

• As the length of lookahead increases, the required computation quickly explodes.

PERFORMANCE BOUNDS FOR 1SL

- Let $\overline{J}_k(x_k)$ be the cost-to-go from (x_k, k) of the 1SL policy, based on functions \tilde{J}_k .
- Assume that for all (x_k, k) , we have

$$\hat{J}_k(x_k) \le \tilde{J}_k(x_k), \qquad (*)$$

where $\hat{J}_N = g_N$ and for all k,

$$\hat{J}_{k}(x_{k}) = \min_{u_{k} \in U_{k}(x_{k})} E\{g_{k}(x_{k}, u_{k}, w_{k}) + \tilde{J}_{k+1}(f_{k}(x_{k}, u_{k}, w_{k}))\},\$$

[so $\hat{J}_k(x_k)$ is computed along with $\overline{\mu}_k(x_k)$]. Then

$$\overline{J}_k(x_k) \leq \hat{J}_k(x_k), \quad \text{for all } (x_k, k).$$

• Important application: When \tilde{J}_k is the cost-togo of some heuristic policy (then the 1SL policy is called the rollout policy).

• The bound can be extended to the case where there is a δ_k in the RHS of (*). Then

$$\overline{J}_k(x_k) \leq \tilde{J}_k(x_k) + \delta_k + \dots + \delta_{N-1}$$

COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used to calculate the 1SL or the multistep version [particularly when $U_k(x_k)$ is not a discrete set]. Connection with stochastic programming (2-stage DP) methods (see text).

• The choice of the approximating functions \tilde{J}_k is critical, and is calculated in a variety of ways.

- Some approaches:
 - (a) **Problem Approximation**: Approximate the optimal cost-to-go with some cost derived from a related but simpler problem
 - (b) Parametric Cost-to-Go Approximation: Approximate the optimal cost-to-go with a function of a suitable parametric form, whose parameters are tuned by some heuristic or systematic scheme (Neuro-Dynamic Programming)
 - (c) Rollout Approach: Approximate the optimal cost-to-go with the cost of some suboptimal policy, which is calculated either analytically or by simulation

PROBLEM APPROXIMATION

- Many (problem-dependent) possibilities
 - Replace uncertain quantities by nominal values, or simplify the calculation of expected values by limited simulation
 - Simplify difficult constraints or dynamics

• Enforced decomposition example: Route *m* vehicles that move over a graph. Each node has a "value." First vehicle that passes through the node collects its value. Want to max the total collected value, subject to initial and final time constraints (plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is much simpler. This motivates an approximation obtained by solving single vehicle problems.

• 1SL scheme: At time k and state x_k (position of vehicles and "collected value nodes"), consider all possible kth moves by the vehicles, and at the resulting states we approximate the optimal valueto-go with the value collected by optimizing the vehicle routes one-at-a-time

PARAMETRIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a parametric class $\tilde{J}(x,r)$ where x is the current state and $r = (r_1, \ldots, r_m)$ is a vector of "tunable" scalars (weights).

• By adjusting the weights, one can change the "shape" of the approximation \tilde{J} so that it is reasonably close to the true optimal cost-to-go function.

- Two key issues:
 - The choice of parametric class $\tilde{J}(x,r)$ (the approximation architecture).
 - Method for tuning the weights ("training" the architecture).

• Successful application strongly depends on how these issues are handled, and on insight about the problem.

• Sometimes a simulation-based algorithm is used, particularly when there is no mathematical model of the system.

• We will look in detail at these issues after a few lectures.

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or nonlinear dependence of $\tilde{J}(x,r)$ on r]

• Linear architectures are easier to train, but nonlinear ones (e.g., neural networks) are richer

• Linear feature-based architecture: $\phi = (\phi_1, \dots, \phi_m)$

$$\tilde{J}(x,r) = \phi(x)'r = \sum_{j=1}^{m} \phi_j(x)r_j$$

• Ideally, the features will encode much of the nonlinearity that is inherent in the cost-to-go approximated, and the approximation may be quite accurate without a complicated architecture

• Anything sensible can be used as features. Sometimes the state space is partitioned, and "local" features are introduced for each subset of the partition (they are 0 outside the subset)

AN EXAMPLE - COMPUTER CHESS

• Chess programs use a feature-based position evaluator that assigns a score to each move/position

• Many context-dependent special features.

• Most often the weighting of features is linear but multistep lookahead is involved.

• Most often the training is done "manually," by trial and error.

ANOTHER EXAMPLE - AGGREGATION

- Main elements (in a finite-state context):
 - Introduce "aggregate" states S_1, \ldots, S_m , viewed as the states of an "aggregate" system
 - Define transition probabilities and costs of the aggregate system, by relating original system states with aggregate states (using so called "aggregation and disaggregation probabilities")
 - Solve (exactly or approximately) the "aggregate" problem by any kind of method (including simulation-based) ... more on this later.
 - Use the optimal cost of the aggregate problem to approximate the optimal cost of each original problem state as a linear combination of the optimal aggregate state costs

• This is a linear feature-based architecture (the optimal aggregate state costs are the features)

• Hard aggregation example: Aggregate states S_j are a partition of original system states (each original state belongs to one and only one S_j).

AN EXAMPLE: REPRESENTATIVE SUBSETS

• The aggregate states S_j are disjoint "representative" subsets of original system states

- Common case: Each S_j is a group of states with "similar characteristics"
- Compute a "cost" r_j for each aggregate state S_j (using some method)

• Approximate the optimal cost of each original system state x with $\sum_{j=1}^{m} \phi_{xj} r_j$

• For each x, the ϕ_{xj} , $j = 1, \ldots, m$, are the "aggregation probabilities" ... roughly the degrees of membership of state x in the aggregate states S_j

• Each ϕ_{xj} is prespecified and can be viewed as the *j*th feature of state *x* 6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.