6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

- Review of approximate policy iteration
- Projected equation methods for policy evaluation
- Issues related to simulation-based implementation
- Multistep projected equation methods
- Bias-variance tradeoff
- Exploration-enhanced implementations
- Oscillations

REVIEW: PROJECTED BELLMAN EQUATION

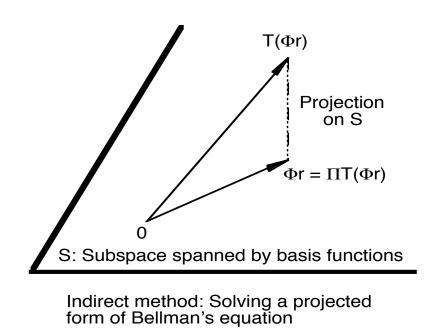
• For a fixed policy μ to be evaluated, consider the corresponding mapping T:

$$(TJ)(i) = \sum_{i=1}^{n} p_{ij} (g(i,j) + \alpha J(j)), \qquad i = 1, \dots, n,$$

or more compactly, $TJ = g + \alpha PJ$

• Approximate Bellman's equation J = TJ by $\Phi r = \Pi T(\Phi r)$ or the matrix form/orthogonality condition $Cr^* = d$, where

$$C = \Phi' \Xi (I - \alpha P) \Phi, \qquad d = \Phi' \Xi g.$$



PROJECTED EQUATION METHODS

- Matrix inversion: $r^* = C^{-1}d$
- Iterative Projected Value Iteration (PVI) method:

$$\Phi r_{k+1} = \Pi T(\Phi r_k) = \Pi (g + \alpha P \Phi r_k)$$

Converges to r^* if ΠT is a contraction. True if Π is projection w.r.t. steady-state distribution norm.

• Simulation-Based Implementations: Generate k+1 simulated transitions sequence $\{i_0, i_1, \ldots, i_k\}$ and approximations $C_k \approx C$ and $d_k \approx d$:

$$C_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \left(\phi(i_t) - \alpha \phi(i_{t+1}) \right)' \approx \Phi' \Xi (I - \alpha P) \Phi$$
$$d_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) g(i_t, i_{t+1}) \approx \Phi' \Xi g$$

• LSTD: $\hat{r}_k = C_k^{-1} d_k$

• **LSPE**: $r_{k+1} = r_k - G_k(C_k r_k - d_k)$ where

$$G_k \approx G = (\Phi' \Xi \Phi)^{-1}$$

Converges to r^* if ΠT is contraction.

ISSUES FOR PROJECTED EQUATIONS

• Implementation of simulation-based solution of projected equation $\Phi r \approx J_{\mu}$, where $C_k r = d_k$ and

 $C_k \approx \Phi' \Xi (I - \alpha P) \Phi, \qquad d_k \approx \Phi' \Xi g$

• Low-dimensional linear algebra needed for the simulation-based approximations C_k and d_k (of order s; the number of basis functions).

• Very large number of samples needed to solve reliably nearly singular projected equations.

• Special methods for nearly singular equations by simulation exist; see Section 7.3 of the text.

• Optimistic (few sample) methods are more vulnerable to simulation error

• Norm mismatch/sampling distribution issue

• The problem of bias: Projected equation solution $\neq \Pi J_{\mu}$, the "closest" approximation of J_{μ}

• Everything said so far relates to policy evaluation. How about the effect of approximations on policy improvement?

• We will next address some of these issues

MULTISTEP METHODS

• Introduce a multistep version of Bellman's equation $J = T^{(\lambda)}J$, where for $\lambda \in [0, 1)$,

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

Geometrically weighted sum of powers of T.

• T^{ℓ} is a contraction with mod. α^{ℓ} , w. r. to weighted Euclidean norm $\|\cdot\|_{\xi}$, where ξ is the steady-state probability vector of the Markov chain.

• Hence $T^{(\lambda)}$ is a contraction with modulus

$$\alpha_{\lambda} = (1 - \lambda) \sum_{\ell=0}^{\infty} \alpha^{\ell+1} \lambda^{\ell} = \frac{\alpha(1 - \lambda)}{1 - \alpha\lambda}$$

Note $\alpha_{\lambda} \to 0$ as $\lambda \to 1$ - affects norm mismatch

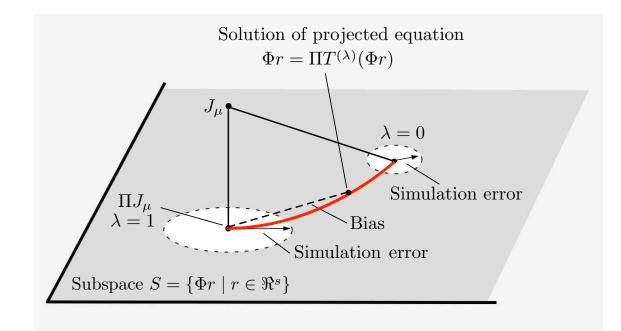
• T^{ℓ} and $T^{(\lambda)}$ have the same fixed point J_{μ} and

$$||J_{\mu} - \Phi r_{\lambda}^{*}||_{\xi} \le \frac{1}{\sqrt{1 - \alpha_{\lambda}^{2}}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}$$

where Φr_{λ}^{*} is the fixed point of $\Pi T^{(\lambda)}$.

• Φr_{λ}^* depends on λ .

BIAS-VARIANCE TRADEOFF



- From $||J_{\mu} \Phi r_{\lambda,\mu}||_{\xi} \leq \frac{1}{\sqrt{1-\alpha_{\lambda}^2}} ||J_{\mu} \Pi J_{\mu}||_{\xi}$ error bound
- As $\lambda \uparrow 1$, we have $\alpha_{\lambda} \downarrow 0$, so error bound (and quality of approximation) improves:

$$\lim_{\lambda \uparrow 1} \Phi r_{\lambda,\mu} = \Pi J_{\mu}$$

• But the simulation noise in approximating

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

increases

• Choice of λ is usually based on trial and error

MULTISTEP PROJECTED EQ. METHODS

- The multistep projected Bellman equation is $\Phi r = \Pi T^{(\lambda)}(\Phi r)$
- In matrix form: $C^{(\lambda)}r = d^{(\lambda)}$, where

$$C^{(\lambda)} = \Phi' \Xi (I - \alpha P^{(\lambda)}) \Phi, \qquad d^{(\lambda)} = \Phi' \Xi g^{(\lambda)},$$

with

$$P^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \alpha^{\ell} \lambda^{\ell} P^{\ell+1}, \quad g^{(\lambda)} = \sum_{\ell=0}^{\infty} \alpha^{\ell} \lambda^{\ell} P^{\ell} g$$

• The LSTD(λ) method is $(C_k^{(\lambda)})^{-1} d_k^{(\lambda)}$, where $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ are simulation-based approximations of $C^{(\lambda)}$ and $d^{(\lambda)}$.

• The LSPE(λ) method is

$$r_{k+1} = r_k - \gamma G_k \left(C_k^{(\lambda)} r_k - d_k^{(\lambda)} \right)$$

where G_k is a simulation-based approx. to $(\Phi' \Xi \Phi)^{-1}$

• $TD(\lambda)$: An important simpler/slower iteration [similar to $LSPE(\lambda)$ with $G_k = I$ - see the text].

MORE ON MULTISTEP METHODS

• The simulation process to obtain $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ is similar to the case $\lambda = 0$ (single simulation trajectory i_0, i_1, \ldots , more complex formulas)

$$C_k^{(\lambda)} = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \sum_{m=t}^k \alpha^{m-t} \lambda^{m-t} (\phi(i_m) - \alpha \phi(i_{m+1}))'$$

$$d_{k}^{(\lambda)} = \frac{1}{k+1} \sum_{t=0}^{k} \phi(i_{t}) \sum_{m=t}^{k} \alpha^{m-t} \lambda^{m-t} g_{i_{m}}$$

• In the context of approximate policy iteration, we can use optimistic versions (few samples between policy updates).

- Many different versions (see the text).
- Note the λ -tradeoffs:
 - As $\lambda \uparrow 1$, $C_k^{(\lambda)}$ and $d_k^{(\lambda)}$ contain more "simulation noise", so more samples are needed for a close approximation of $r_{\lambda,\mu}$
 - The error bound $||J_{\mu} \Phi r_{\lambda,\mu}||_{\xi}$ becomes smaller
 - As $\lambda \uparrow 1$, $\Pi T^{(\lambda)}$ becomes a contraction for arbitrary projection norm

APPROXIMATE PI ISSUES - EXPLORATION

• 1st major issue: exploration. Common remedy is the off-policy approach: Replace P of current policy with

$$\overline{P} = (I - B)P + BQ,$$

where B is a diagonal matrix with $\beta_i \in [0, 1]$ on the diagonal, and Q is another transition matrix.

• Then LSTD and LSPE formulas must be modified ... otherwise the policy associated with \overline{P} (not P) is evaluated (see the textbook, Section 6.4).

• Alternatives: Geometric and free-form sampling

• Both of these use multiple short simulated trajectories, with random restart state, chosen to enhance exploration (see the text)

• Geometric sampling uses trajectories with geometrically distributed number of transitions with parameter $\lambda \in [0, 1)$. It implements $\text{LSTD}(\lambda)$ and $\text{LSPE}(\lambda)$ with exploration.

• Free-form sampling uses trajectories with more generally distributed number of transitions. It implements method for approximation of the solution of a generalized multistep Bellman equation.

APPROXIMATE PI ISSUES - OSCILLATIONS

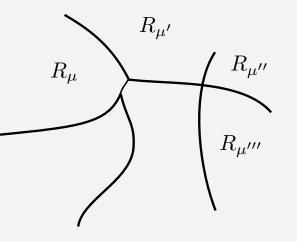
• Define for each policy μ

$$R_{\mu} = \left\{ r \mid T_{\mu}(\Phi r) = T(\Phi r) \right\}$$

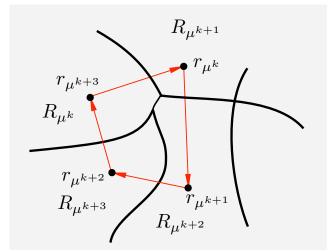
• These sets form the greedy partition of the parameter r-space

$$R_{\mu} = \left\{ r \mid T_{\mu}(\Phi r) = T(\Phi r) \right\}$$

For a policy μ , R_{μ} is the set of all r such that policy improvement based on Φr produces μ

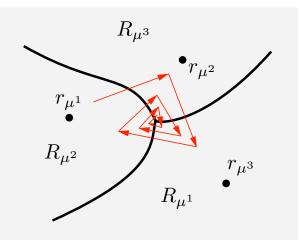


• Oscillations of nonoptimistic approx.: r_{μ} is generated by an evaluation method so that $\Phi r_{\mu} \approx J_{\mu}$



MORE ON OSCILLATIONS/CHATTERING

• For optimistic PI a different picture holds



• Oscillations are less violent, but the "limit" point is meaningless!

- Fundamentally, oscillations are due to the lack of monotonicity of the projection operator, i.e., $J \leq J'$ does not imply $\Pi J \leq \Pi J'$.
- If approximate PI uses policy evaluation

$$\Phi r = (WT_{\mu})(\Phi r)$$

with W a monotone operator, the generated policies converge (to an approximately optimal limit).

• The operator W used in the aggregation approach has this monotonicity property.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.