
6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

• Rollout algorithms

• Policy improvement property

• Discrete deterministic problems

• Approximations of rollout algorithms

• Model Predictive Control (MPC)

• Discretization of continuous time

• Discretization of continuous space

• Other suboptimal approaches

1

ROLLOUT ALGORITHMS

• One-step lookahead policy: At each k and state
xk, use the control µk(xk) that

˜min E
{

gk(xk, uk, wk) + Jk+1 fk(xk, uk, wk) ,
u ∈U (x)k k k

where

()}

− J̃N = gN .
˜− Jk+1: approximation to true cost-to-go Jk+1

• Rollout algorithm: When J̃k is the cost-to-go of
some heuristic policy (called the base policy)

• Policy improvement property (to be shown):
The rollout algorithm achieves no worse (and usu-
ally much better) cost than the base heuristic start-
ing from the same state.

• Main difficulty: Calculating J̃k(xk) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case.

2

EXAMPLE: THE QUIZ PROBLEM

• A person is given N questions; answering cor-
rectly question i has probability pi, reward vi.
Quiz terminates at the first incorrect answer.

• Problem: Choose the ordering of questions so
as to maximize the total expected reward.

• Assuming no other constraints, it is optimal to
use the index policy: Answer questions in decreas-
ing order of pivi/(1− pi).

• With minor changes in the problem, the index
policy need not be optimal. Examples:

− A limit (< N) on the maximum number of
questions that can be answered.

− Time windows, sequence-dependent rewards,
precedence constraints.

• Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.

• Very effective for solving the quiz problem and
important generalizations in scheduling (see Bert-
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).

3

COST IMPROVEMENT PROPERTY

• Let

Jk(xk): Cost-to-go of the rollout policy

Hk(xk): Cost-to-go of the base policy

• We claim that Jk(xk) ≤ Hk(xk) for all xk, k

• Proof by induction: We have JN (xN) = HN (xN)
for all xN . Assume that

Jk+1(xk+1) ≤ Hk+1(xk+1), ∀ xk+1.

Let µk(xk) and µk(xk) be the controls applied by
rollout and heuristic at xk. Then, for all xk

Jk(xk) = E
{

gk
(

xk, µk(xk), wk

)

+ Jk+1

(

fk
(

xk, µk(xk), wk

≤ E

))}

{

gk
(

xk, µk(xk), wk

)

+Hk+1

(

fk
(

xk, µk(xk), wk

≤ E
{

gk
(

xk, µk(xk), wk +Hk+1 fk xk, µk(xk), wk

))}

= Hk(xk)

) (())}

− Induction hypothesis ==> 1st inequality

− Min selection of µk(xk) ==> 2nd inequality

− Definition of Hk, µk ==> last equality

4

DISCRETE DETERMINISTIC PROBLEMS

• Any discrete optimization problem can be repre-
sented sequentially by breaking down the decision
process into stages.

• A tree/shortest path representation. The leaves
of the tree correspond to the feasible solutions.

• Example: Traveling salesman problem. Find a
minimum cost tour through N cities.

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Origin Node sA

Traveling salesman problem with four cities A, B, C, D

• Complete partial solutions, one stage at a time

• May apply rollout with any heuristic that can
complete a partial solution

• No costly stochastic simulation needed

5

EXAMPLE: THE BREAKTHROUGH PROBLEM

root

• Given a binary tree with N stages.

• Each arc is free or is blocked (crossed out)

• Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

• Base heuristic (greedy): Follow the right branch
if free; else follow the left branch if free.

• This is a rare rollout instance that admits a
detailed analysis.

• For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
finding a free path than the greedy algorithm.

6

DET. EXAMPLE: ONE-DIMENSIONAL WALK

• A person takes either a unit step to the left or
a unit step to the right. Minimize the cost g(i) of
the point i where he will end up after N steps.

g(i)

iNN - 2-N 0

(N,0)(N,-N) (N,N)

i
_

i
_

(0,0)

• Base heuristic: Always go to the right. Rollout
finds the rightmost local minimum.

• Alternative base heuristic: Compare always go
to the right and always go the left. Choose the
best of the two. Rollout finds a global minimum.

7

A ROLLOUT ISSUE FOR DISCRETE PROBLEMS

• The base heuristic need not constitute a policy
in the DP sense.

• Reason: Depending on its starting point, the
base heuristic may not apply the same control at
the same state.

• As a result the cost improvement property may
be lost (except if the base heuristic has a property
called sequential consistency; see the text for a
formal definition).

• The cost improvement property is restored in
two ways:

− The base heuristic has a property called se-
quential improvement which guarantees cost
reduction at each step (see the text for a for-
mal definition).

− A variant of the rollout algorithm, called for-
tified rollout, is used, which enforces cost
improvement. Roughly speaking the “best”
solution found so far is maintained, and it
is followed whenever at any time the stan-
dard version of the algorithm tries to follow
a “worse” solution (see the text).

8

ROLLING HORIZON WITH ROLLOUT

• We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

• Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

• Example: N-stage stopping problem where the
stopping cost is 0, the continuation cost is either
−ǫ or 1, where 0 < ǫ << 1, and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is −mǫ.

• Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of ℓ ≤ m steps.

• It will continue up to the first m− ℓ+ 1 stages,
thus compiling a cost of −(m− ℓ+1)ǫ. The rollout
performance improves as l becomes shorter!

• Limited vision may work to our advantage!

9

MODEL PREDICTIVE CONTROL (MPC)

• Special case of rollout for linear deterministic
systems (similar extensions to nonlinear/stochastic)

− System: xk+1 = Axk +Buk

− Quadratic cost per stage: x′
kQxk + u′

kRuk

− Constraints: xk ∈ X, uk ∈ U(xk)

• Assumption: For any x0 ∈ X there is a feasible
state-control sequence that brings the system to 0
in m steps, i.e., xm = 0

• MPC at state xk solves an m-step optimal con-
trol problem with constraint xk+m = 0, i.e., finds
a sequence ūk, . . . , ūk+m−1 that minimizes

m−1

x′
k+ℓQx ′

k+ℓ + uk+ℓRuk+ℓ

ℓ=0

subject to

∑

xk+m

(

= 0

)

• Then applies the first control ūk (and repeats
at the next state xk+1)

• MPC is rollout with heuristic derived from the
corresponding m−1-step optimal control problem

• Key Property of MPC: Since the heuristic is sta-
ble, the rollout is also stable (suggested by policy
improvement property; see the text).

10

DISCRETIZATION

• If the time, and/or state space, and/or control
space are continuous, they must be discretized.

• Consistency issue, i.e., as the discretization be-
comes finer, the cost-to-go functions of the dis-
cretized problem should converge to those of the
original problem.

• Pitfall with discretizing continuous time: The
control constraint set may change a lot as we pass
to the discrete-time approximation.

• Example: Consider the system ẋ(t) = u(t), with
control constraint u(t) ∈ {−1, 1}. The reachable
states after time δ are x(t + δ) = x(t) + u, with
u ∈ [−δ, δ].

• Compare it with the reachable states after we
discretize the system naively: x(t+δ) = x(t)+δu(t),
with u(t) ∈ {−1, 1}.

• “Convexification effect” of continuous time: a
discrete control constraint set in continuous-time
differential systems, is equivalent to a continuous
control constraint set when the system is looked
at discrete times.

11

SPACE DISCRETIZATION

• Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.

• Difficulty: f(x, u, w) ∈/ S for x ∈ S.

• We define an approximation to the original
problem, with state space S, as follows:

• Express each x ∈ S as a convex combination of
states in S, i.e.,

x =

x

∑

∈i

φi(x)xi where φi(x) ≥ 0,

S

∑

φi(x) = 1

i

• Define a “reduced” dynamic system with state
space S, whereby from each xi ∈ S we move to
x = f(xi, u, w) according to the system equation
of the original problem, and then move to xj ∈ S
with probabilities φj(x).

• Define similarly the corresponding cost per stage
of the transitions of the reduced system.

• Note application to finite-state POMDP (dis-
cretization of the simplex of the belief states).

12

SPACE DISCRETIZATION/AGGREGATION

• Let Jk(xi) be the optimal cost-to-go of the “re-
duced” problem from each state xi ∈ S and time
k onward.

• Approximate the optimal cost-to-go of any x ∈ S
for the original problem by

J̃k(x) =

x

∑

∈i S

φi(x)Jk(xi),

and use one-step-lookahead based on J̃k.

• The coefficients φi(x) can be viewed as features
in an aggregation scheme.

• Important question: Consistency, i.e., as the
number of states in S increases, J̃k(x) should con-
verge to the optimal cost-to-go of the original prob.

• Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

• Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients φi(x)
admit a meaningful interpretation that quantifies
the degree of association of x with xi (a form of
aggregation).

13

OTHER SUBOPTIMAL APPROACHES

• Minimize the DP equation error (Fitted Value
Iteration): Approximate Jk(xk) with J̃k(xk, rk), where
rk is a parameter vector, chosen to minimize some
form of error in the DP equations

− Can be done sequentially going backwards
in time (approximate Jk using an approxi-
mation of Jk+1, starting with J̃N = gN).

• Direct approximation of control policies: For a
subset of states xi, i = 1, . . . ,m, find

µ̂ i
k(x) = arg min i

E g
iu ∈U (x)k

{

(x , uk, wk)
k

+ J̃ i
k+1

(

fk(x , uk, wk), rk+1

Then find µ̃k(xk, sk), where sk is a vector of p

)

a

}

-
rameters obtained by solving the problem

m

min
∑

‖µ̂ (xi
k)− µ̃k(x

i, s)‖2
s

i=1

• Approximation in policy space: Do not bother
with cost-to-go approximations. Parametrize the
policies as µ̃k(xk, sk), and minimize the cost func-
tion of the problem over the parameters sk (ran-
dom search is a possibility).

14

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

