
6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Problems with imperfect state info

• Reduction to the perfect state info case

• Linear quadratic problems

• Separation of estimation and control
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BASIC PROBL. W/ IMPERFECT STATE INFO

• Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing xk,
receives at each time k an observation of the form

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 1

• The observation zk belongs to some space Zk.

• The random observation disturbance vk is char-
acterized by a probability distribution

Pvk (· | xk, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0)

• The initial state x0 is also random and charac-
terized by a probability distribution Px0 .

• The probability distribution Pwk
(· | xk, uk) of wk

is given, and it may depend explicitly on xk and
uk but not on w0, . . . , wk−1, v0, . . . , vk−1.

• The control uk is constrained to a given subset
Uk (this subset does not depend on xk, which is
not assumed known).
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INFORMATION VECTOR AND POLICIES

• Denote by Ik the information vector, i.e., the
information available at time k:

Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1,

I0 = z0

• We consider policies π = {µ0, µ1, . . . , µN−1}, where
each µk maps Ik into a uk and

µk(Ik) ∈ Uk, for all Ik, k ≥ 0

• We want to find a policy π that minimizes

N−1

Jπ = E gN (xN ) + gk xk, µk(Ik), wk
x ,w ,v0 k k

k=0,...,N−1

{

∑

k=0

}

( )

subject to the equations

xk+1 = fk
(

xk, µk(Ik), wk , k ≥ 0,

z0 = h0(x0, v0), zk = h x

)

k

(

k, µk−1(Ik−1), vk
)

, k ≥ 1
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REFORMULATION AS PERFECT INFO PROBL.

• System: We have

Ik+1 = (Ik, zk+1, uk), k = 0, 1, . . . , N − 2, I0 = z0

View this as a dynamic system with state Ik, con-
trol uk, and random disturbance zk+1

• Disturbance: We have

P (zk+1 | Ik, uk) = P (zk+1 | Ik, uk, z0, z1, . . . , zk),

since z0, z1, . . . , zk are part of the information vec-
tor Ik. Thus the probability distribution of zk+1

depends explicitly only on the state Ik and control
uk and not on the prior “disturbances” zk, . . . , z0

• Cost Function: Write

E
{

gk(xk, uk, wk)
}

= E

{

E
x ,wk k

{

gk(xk, uk, wk) | Ik, uk

}

}

so the cost per stage of the new system is

g̃k(Ik, uk) = E
x ,wk k

{

gk(xk, uk, wk) | Ik, uk

}
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DP ALGORITHM

• Writing the DP algorithm for the (reformulated)
perfect state info problem:

Jk(Ik) = min
[

E
{

gk(xk, uk, wk)
u ∈Uk k x ,w , zk k k+1

+ Jk+1(Ik, zk+1, uk) | Ik, uk

]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

}

JN−1(IN−1) = min

[

E
{

gN−1(xN−1, uN−1, wN−1)
uN−1∈UN−1 xN−1, wN−1

+ gN
(

fN−1(xN−1, uN−1, wN−1)
)

| IN−1, uN−1

]

}

• The optimal cost J∗ is given by

J∗ = E
z0

{

J0(z0)
}
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LINEAR-QUADRATIC PROBLEMS

• System: xk+1 = Akxk +Bkuk + wk

• Quadratic cost

N−1

′
E

{

x′ Q ′
N NxN + (xkQkxk + ukRkuk)

wk
k=0,1,...,N−1

∑

k=0

}

where Qk ≥ 0 and Rk > 0

• Observations

zk = Ckxk + vk, k = 0, 1, . . . , N − 1

• w0, . . . , wN−1, v0, . . . , vN−1 indep. zero mean

• Key fact to show:

− Optimal policy {µ∗
0, . . . , µ

∗
N−1} is of the form:

µ∗
k(Ik) = LkE{xk | Ik}

Lk: same as for the perfect state info case

− Estimation problem and control problem can
be solved separately
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DP ALGORITHM I

• Last stage N − 1 (supressing index N − 1):

′JN−1(IN−1) = min ExN−1,wN−1
x QxN−1 N−1

uN−1

+ ′ ′u Ru1 1

[

N− N− + (AxN−1 +

{

BuN−1 + wN−1)

·Q(AxN−1 +BuN−1 + wN−1) | IN−1, uN−1

}

]

• Since E{wN−1 | IN−1, uN−1} = E{wN−1} = 0,
the minimization involves

min u′
N−1(B

′QB +R)uN−1
uN−1

[

+ 2E{x | I }′A′
N−1 N−1 QBuN−1

The minimization yields the optimal µ∗
N−1

]

:

u∗
N−1 = µ∗

N−1(IN−1) = LN−1E{xN−1 | IN−1}

where

LN−1 = −(B′QB +R)−1B′QA
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DP ALGORITHM II

• Substituting in the DP algorithm

J (I ) =
{

x′
N−1 N−1 E N−1KN−1xN−1 | IN−1

xN−1

′
+ E

{(

xN−1 − E{xN−1 | IN−1}

}

xN−1

· PN−1

(

xN−1 − E{xN−1 | IN

)

−1} | IN−1

+ w′
E { N−1QNwN−1},

wN−1

) }

where the matrices KN−1 and PN−1 are given by

P ′ ′ −1
N−1 = AN−1QNBN−1(RN−1 +BN−1QNBN−1)

·B′
N−1QNAN−1,

K = A′
N−1 N−1QNAN−1 − PN−1 +QN−1

• Note the structure of JN−1: in addition to the
quadratic and constant terms, it involves a (≥ 0)
quadratic in the estimation error

xN−1 − E{xN−1 | IN−1}
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DP ALGORITHM III

• DP equation for period N − 2:

′JN−2(IN−2) = min
uN−2

[

E {x QxN−2 N−2
xN−2,wN−2,zN−1

+ ′u RuN−2 + J IN−2 N−1( N−1) | IN−2, uN−2}

= E

]

+

{

′x QxN−2 N−2 | IN−2

min

[

′u RuN−2 N−2
u

}

N−2

+ E
{

′x KN−1 N−1xN−1 | IN−2, uN−2

+ E

}

]

· P

{

N

( ′
xN−1 − E{xN−1 | IN−1}

−1

(

xN−1 − E{xN−1 | IN−

)

1}
)

| IN−2, uN−2

+ EwN−1
{ ′w QN−1 NwN−1}

}

• Key point: We have excluded the estimation
error term from the minimization over uN−2

• This term turns out to be independent of uN−2
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QUALITY OF ESTIMATION LEMMA

• Current estimation error is unaffected by past
controls: For every k, there is a function Mk s.t.

xk − E{xk | Ik} = Mk(x0, w0, . . . , wk−1, v0, . . . , vk),

independently of the policy being used

• Consequence: Using the lemma,

xN−1 − E{xN−1 | IN−1} = ξN−1,
where

ξN−1: function of x0, w0, . . . , wN−2, v0, . . . , vN−1

• Since ξN−1 is independent of uN−2, the condi-
tional expectation of ξ′N−1PN−1ξN−1 satisfies

E{ξ′N−1PN−1ξN−1 | IN−2, uN−2}

= E{ξ′N−1PN−1ξN−1 | IN−2}

and is independent of uN−2.

• So minimization in the DP algorithm yields

u∗ ∗
N−2 = µN−2(IN−2) = LN−2 E{xN−2 | IN−2}
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FINAL RESULT

• Continuing similarly (using also the quality of
estimation lemma)

µ∗
k(Ik) = LkE{xk | Ik},

where Lk is the same as for perfect state info:

Lk = −(Rk +B′ ′
kKk+1Bk)

−1BkKk+1Ak,

with Kk generated using the Riccati equation:

K ′
N = QN , Kk = AkKk+1Ak − Pk +Qk,

Pk = A′
kK

′
k+1Bk(Rk +BkK

′
k+ Bk)

−1
1 BkKk+1Ak

xk + 1 = Akxk + Bkuk + wk

Lk

uk

wk

xk
zk = Ckxk + vk

Delay

Estimator
E{xk | Ik}

uk  - 1

zk

vk

zkuk
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SEPARATION INTERPRETATION

• The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E{xk | Ik}.

(b) An actuator, which multiplies E{xk | Ik} by
the gain matrix Lk and applies the control
input uk = LkE{xk | Ik}.

• Generically the estimate x̂ of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

Ex{‖x− x̂‖2 | I} = ‖x‖2 − 2E{x | I}x̂+ ‖x̂‖2

is E{x | I} (set to zero the derivative with respect
to x̂ of the above quadratic form).

• The estimator portion of the optimal controller
is optimal for the problem of estimating the state
xk assuming the control is not subject to choice.

• The actuator portion is optimal for the control
problem assuming perfect state information.
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STEADY STATE/IMPLEMENTATION ASPECTS

• As N → ∞, the solution of the Riccati equation
converges to a steady state and Lk → L.

• If x0, wk, and vk are Gaussian, E{xk | Ik} is
a linear function of Ik and is generated by a nice
recursive algorithm, the Kalman filter.

• The Kalman filter involves also a Riccati equa-
tion, so for N → ∞, and a stationary system, it
also has a steady-state structure.

• Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

• For nonGaussian uncertainty, computing E{xk | Ik}
maybe very difficult, so a suboptimal solution is
typically used.

• Most common suboptimal controller: Replace
E{xk | Ik} by the estimate produced by the Kalman
filter (act as if x0, wk, and vk are Gaussian).

• It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of Ik.
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