6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

- Problems with imperfect state info
- Reduction to the perfect state info case
- Linear quadratic problems
- Separation of estimation and control

BASIC PROBL. W/ IMPERFECT STATE INFO

- Same as basic problem of Chapter 1 with one difference: the controller, instead of knowing x_{k}, receives at each time k an observation of the form

$$
z_{0}=h_{0}\left(x_{0}, v_{0}\right), \quad z_{k}=h_{k}\left(x_{k}, u_{k-1}, v_{k}\right), \quad k \geq 1
$$

- The observation z_{k} belongs to some space Z_{k}.
- The random observation disturbance v_{k} is characterized by a probability distribution
$P_{v_{k}}\left(\cdot \mid x_{k}, \ldots, x_{0}, u_{k-1}, \ldots, u_{0}, w_{k-1}, \ldots, w_{0}, v_{k-1}, \ldots, v_{0}\right)$
- The initial state x_{0} is also random and characterized by a probability distribution $P_{x_{0}}$.
- The probability distribution $P_{w_{k}}\left(\cdot \mid x_{k}, u_{k}\right)$ of w_{k} is given, and it may depend explicitly on x_{k} and u_{k} but not on $w_{0}, \ldots, w_{k-1}, v_{0}, \ldots, v_{k-1}$.
- The control u_{k} is constrained to a given subset U_{k} (this subset does not depend on x_{k}, which is not assumed known).

INFORMATION VECTOR AND POLICIES

- Denote by I_{k} the information vector, i.e., the information available at time k :

$$
\begin{aligned}
& I_{k}=\left(z_{0}, z_{1}, \ldots, z_{k}, u_{0}, u_{1}, \ldots, u_{k-1}\right), \quad k \geq 1, \\
& I_{0}=z_{0}
\end{aligned}
$$

- We consider policies $\pi=\left\{\mu_{0}, \mu_{1}, \ldots, \mu_{N-1}\right\}$, where each μ_{k} maps I_{k} into a u_{k} and

$$
\mu_{k}\left(I_{k}\right) \in U_{k}, \quad \text { for all } I_{k}, k \geq 0
$$

- We want to find a policy π that minimizes

$$
J_{\pi}=\underset{\substack{x_{0}, w_{k}, v_{k} \\ k=0, \ldots, N-1}}{E}\left\{g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(I_{k}\right), w_{k}\right)\right\}
$$

subject to the equations

$$
\begin{gathered}
x_{k+1}=f_{k}\left(x_{k}, \mu_{k}\left(I_{k}\right), w_{k}\right), \quad k \geq 0, \\
z_{0}=h_{0}\left(x_{0}, v_{0}\right), \quad z_{k}=h_{k}\left(x_{k}, \mu_{k-1}\left(I_{k-1}\right), v_{k}\right), \quad k \geq 1
\end{gathered}
$$

REFORMULATION AS PERFECT INFO PROBL.

- System: We have

$$
I_{k+1}=\left(I_{k}, z_{k+1}, u_{k}\right), \quad k=0,1, \ldots, N-2, \quad I_{0}=z_{0}
$$

View this as a dynamic system with state I_{k}, control u_{k}, and random disturbance z_{k+1}

- Disturbance: We have

$$
P\left(z_{k+1} \mid I_{k}, u_{k}\right)=P\left(z_{k+1} \mid I_{k}, u_{k}, z_{0}, z_{1}, \ldots, z_{k}\right),
$$

since $z_{0}, z_{1}, \ldots, z_{k}$ are part of the information vector I_{k}. Thus the probability distribution of z_{k+1} depends explicitly only on the state I_{k} and control u_{k} and not on the prior "disturbances" z_{k}, \ldots, z_{0}

- Cost Function: Write
$E\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right\}=E\left\{\underset{x_{k}, w_{k}}{E}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right) \mid I_{k}, u_{k}\right\}\right\}$
so the cost per stage of the new system is

$$
\tilde{g}_{k}\left(I_{k}, u_{k}\right)=\underset{x_{k}, w_{k}}{E}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right) \mid I_{k}, u_{k}\right\}
$$

DP ALGORITHM

- Writing the DP algorithm for the (reformulated) perfect state info problem:

$$
\begin{aligned}
J_{k}\left(I_{k}\right)= & \min _{u_{k} \in U_{k}}\left[{ } _ { x _ { k } , w _ { k } , z _ { k + 1 } } ^ { E } \left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right.\right. \\
& \left.\left.+J_{k+1}\left(I_{k}, z_{k+1}, u_{k}\right) \mid I_{k}, u_{k}\right\}\right]
\end{aligned}
$$

for $k=0,1, \ldots, N-2$, and for $k=N-1$,
$J_{N-1}\left(I_{N-1}\right)=\min _{u_{N-1} \in U_{N-1}}\left[\underset{x_{N-1}, w_{N-1}}{E}\left\{g_{N-1}\left(x_{N-1}, u_{N-1}, w_{N-1}\right)\right.\right.$

$$
\left.+g_{N}\left(f_{N-1}\left(x_{N-1}, u_{N-1}, w_{N-1}\right)\right) \mid I_{N-1}, u_{N-1}\right\}
$$

- The optimal cost J^{*} is given by

$$
J^{*}=\underset{z_{0}}{E}\left\{J_{0}\left(z_{0}\right)\right\}
$$

LINEAR-QUADRATIC PROBLEMS

- System: $x_{k+1}=A_{k} x_{k}+B_{k} u_{k}+w_{k}$
- Quadratic cost
$\underset{\substack{w_{k} \\ k=0,1, \ldots, N-1}}{E}\left\{x_{N}^{\prime} Q_{N} x_{N}+\sum_{k=0}^{N-1}\left(x_{k}^{\prime} Q_{k} x_{k}+u_{k}^{\prime} R_{k} u_{k}\right)\right\}$
where $Q_{k} \geq 0$ and $R_{k}>0$
- Observations

$$
z_{k}=C_{k} x_{k}+v_{k}, \quad k=0,1, \ldots, N-1
$$

- $w_{0}, \ldots, w_{N-1}, v_{0}, \ldots, v_{N-1}$ indep. zero mean
- Key fact to show:
- Optimal policy $\left\{\mu_{0}^{*}, \ldots, \mu_{N-1}^{*}\right\}$ is of the form:

$$
\mu_{k}^{*}\left(I_{k}\right)=L_{k} E\left\{x_{k} \mid I_{k}\right\}
$$

L_{k} : same as for the perfect state info case

- Estimation problem and control problem can be solved separately

DP ALGORITHM I

- Last stage $N-1$ (supressing index $N-1$):

$$
\begin{aligned}
& J_{N-1}\left(I_{N-1}\right)=\min _{u_{N-1}}\left[E _ { x _ { N - 1 } , w _ { N - 1 } } \left\{x_{N-1}^{\prime} Q x_{N-1}\right.\right. \\
& \quad+u_{N-1}^{\prime} R u_{N-1}+\left(A x_{N-1}+B u_{N-1}+w_{N-1}\right)^{\prime} \\
& \left.\left.\quad \cdot Q\left(A x_{N-1}+B u_{N-1}+w_{N-1}\right) \mid I_{N-1}, u_{N-1}\right\}\right]
\end{aligned}
$$

- Since $E\left\{w_{N-1} \mid I_{N-1}, u_{N-1}\right\}=E\left\{w_{N-1}\right\}=0$, the minimization involves

$$
\begin{aligned}
& \min _{u_{N-1}}\left[u_{N-1}^{\prime}\left(B^{\prime} Q B+R\right) u_{N-1}\right. \\
&\left.+2 E\left\{x_{N-1} \mid I_{N-1}\right\}^{\prime} A^{\prime} Q B u_{N-1}\right]
\end{aligned}
$$

The minimization yields the optimal μ_{N-1}^{*} :

$$
u_{N-1}^{*}=\mu_{N-1}^{*}\left(I_{N-1}\right)=L_{N-1} E\left\{x_{N-1} \mid I_{N-1}\right\}
$$

where

$$
L_{N-1}=-\left(B^{\prime} Q B+R\right)^{-1} B^{\prime} Q A
$$

DP ALGORITHM II

- Substituting in the DP algorithm

$$
\begin{aligned}
& J_{N-1}\left(I_{N-1}\right)=\underset{x_{N-1}}{E}\left\{x_{N-1}^{\prime} K_{N-1} x_{N-1} \mid I_{N-1}\right\} \\
&+ E \\
& x_{N-1}\left\{\left(x_{N-1}-E\left\{x_{N-1} \mid I_{N-1}\right\}\right)^{\prime}\right. \\
&\left.\cdot P_{N-1}\left(x_{N-1}-E\left\{x_{N-1} \mid I_{N-1}\right\}\right) \mid I_{N-1}\right\} \\
&+\underset{w_{N-1}}{E}\left\{w_{N-1}^{\prime} Q_{N} w_{N-1}\right\},
\end{aligned}
$$

where the matrices K_{N-1} and P_{N-1} are given by

$$
\begin{gathered}
P_{N-1}=A_{N-1}^{\prime} Q_{N} B_{N-1}\left(R_{N-1}+B_{N-1}^{\prime} Q_{N} B_{N-1}\right)^{-1} \\
\cdot B_{N-1}^{\prime} Q_{N} A_{N-1}, \\
K_{N-1}=A_{N-1}^{\prime} Q_{N} A_{N-1}-P_{N-1}+Q_{N-1}
\end{gathered}
$$

- Note the structure of J_{N-1} : in addition to the quadratic and constant terms, it involves a (≥ 0) quadratic in the estimation error

$$
x_{N-1}-E\left\{x_{N-1} \mid I_{N-1}\right\}
$$

DP ALGORITHM III

- DP equation for period $N-2$:

$$
\begin{aligned}
& J_{N-2}\left(I_{N-2}\right)=\min _{u_{N-2}}\left[\begin{array} { c }
{ E } \\
{ x _ { N - 2 } , w _ { N - 2 } , z _ { N - 1 } }
\end{array} \left\{x_{N-2}^{\prime} Q x_{N-2}\right.\right. \\
& \left.\left.\quad+u_{N-2}^{\prime} R u_{N-2}+J_{N-1}\left(I_{N-1}\right) \mid I_{N-2}, u_{N-2}\right\}\right] \\
& =E\left\{x_{N-2}^{\prime} Q x_{N-2} \mid I_{N-2}\right\} \\
& +\min _{u_{N-2}}\left[u_{N-2}^{\prime} R u_{N-2}\right. \\
& \left.\quad+E\left\{x_{N-1}^{\prime} K_{N-1} x_{N-1} \mid I_{N-2}, u_{N-2}\right\}\right] \\
& + \\
& \quad E\left\{\left(x_{N-1}-E\left\{x_{N-1} \mid I_{N-1}\right\}\right)^{\prime}\right. \\
& \left.\quad \cdot P_{N-1}\left(x_{N-1}-E\left\{x_{N-1} \mid I_{N-1}\right\}\right) \mid I_{N-2}, u_{N-2}\right\} \\
& + \\
& +E_{w_{N-1}}\left\{w_{N-1}^{\prime} Q_{N} w_{N-1}\right\}
\end{aligned}
$$

- Key point: We have excluded the estimation error term from the minimization over u_{N-2}
- This term turns out to be independent of u_{N-2}

QUALITY OF ESTIMATION LEMMA

- Current estimation error is unaffected by past controls: For every k, there is a function M_{k} s.t.

$$
x_{k}-E\left\{x_{k} \mid I_{k}\right\}=M_{k}\left(x_{0}, w_{0}, \ldots, w_{k-1}, v_{0}, \ldots, v_{k}\right),
$$

independently of the policy being used

- Consequence: Using the lemma,

$$
x_{N-1}-E\left\{x_{N-1} \mid I_{N-1}\right\}=\xi_{N-1},
$$

where

$$
\xi_{N-1}: \text { function of } x_{0}, w_{0}, \ldots, w_{N-2}, v_{0}, \ldots, v_{N-1}
$$

- Since ξ_{N-1} is independent of u_{N-2}, the conditional expectation of $\xi_{N-1}^{\prime} P_{N-1} \xi_{N-1}$ satisfies

$$
\begin{aligned}
E\left\{\xi_{N-1}^{\prime} P_{N-1} \xi_{N-1}\right. & \left.\mid I_{N-2}, u_{N-2}\right\} \\
& =E\left\{\xi_{N-1}^{\prime} P_{N-1} \xi_{N-1} \mid I_{N-2}\right\}
\end{aligned}
$$

and is independent of u_{N-2}.

- So minimization in the DP algorithm yields

$$
u_{N-2}^{*}=\mu_{N-2}^{*}\left(I_{N-2}\right)=L_{N-2} E\left\{x_{N-2} \mid I_{N-2}\right\}
$$

FINAL RESULT

- Continuing similarly (using also the quality of estimation lemma)

$$
\mu_{k}^{*}\left(I_{k}\right)=L_{k} E\left\{x_{k} \mid I_{k}\right\},
$$

where L_{k} is the same as for perfect state info:

$$
L_{k}=-\left(R_{k}+B_{k}^{\prime} K_{k+1} B_{k}\right)^{-1} B_{k}^{\prime} K_{k+1} A_{k},
$$

with K_{k} generated using the Riccati equation:

$$
K_{N}=Q_{N}, \quad K_{k}=A_{k}^{\prime} K_{k+1} A_{k}-P_{k}+Q_{k},
$$

$$
P_{k}=A_{k}^{\prime} K_{k+1} B_{k}\left(R_{k}+B_{k}^{\prime} K_{k+1} B_{k}\right)^{-1} B_{k}^{\prime} K_{k+1} A_{k}
$$

SEPARATION INTERPRETATION

- The optimal controller can be decomposed into
(a) An estimator, which uses the data to generate the conditional expectation $E\left\{x_{k} \mid I_{k}\right\}$.
(b) An actuator, which multiplies $E\left\{x_{k} \mid I_{k}\right\}$ by the gain matrix L_{k} and applies the control input $u_{k}=L_{k} E\left\{x_{k} \mid I_{k}\right\}$.
- Generically the estimate \hat{x} of a random vector x given some information (random vector) I, which minimizes the mean squared error

$$
E_{x}\left\{\|x-\hat{x}\|^{2} \mid I\right\}=\|x\|^{2}-2 E\{x \mid I\} \hat{x}+\|\hat{x}\|^{2}
$$

is $E\{x \mid I\}$ (set to zero the derivative with respect to \hat{x} of the above quadratic form).

- The estimator portion of the optimal controller is optimal for the problem of estimating the state x_{k} assuming the control is not subject to choice.
- The actuator portion is optimal for the control problem assuming perfect state information.

STEADY STATE/IMPLEMENTATION ASPECTS

- As $N \rightarrow \infty$, the solution of the Riccati equation converges to a steady state and $L_{k} \rightarrow L$.
- If x_{0}, w_{k}, and v_{k} are Gaussian, $E\left\{x_{k} \mid I_{k}\right\}$ is a linear function of I_{k} and is generated by a nice recursive algorithm, the Kalman filter.
- The Kalman filter involves also a Riccati equation, so for $N \rightarrow \infty$, and a stationary system, it also has a steady-state structure.
- Thus, for Gaussian uncertainty, the solution is nice and possesses a steady state.
- For nonGaussian uncertainty, computing $E\left\{x_{k} \mid I_{k}\right\}$ maybe very difficult, so a suboptimal solution is typically used.
- Most common suboptimal controller: Replace $E\left\{x_{k} \mid I_{k}\right\}$ by the estimate produced by the Kalman filter (act as if x_{0}, w_{k}, and v_{k} are Gaussian).
- It can be shown that this controller is optimal within the class of controllers that are linear functions of I_{k}.

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

